To explain wwii's excellent answer in a little more detail:
The idea is to create a new dimension which does the job of comparing each element of a
to each element in choices
using numpy broadcasting. This is easily done for an arbitrary number of dimensions in a
using the ellipsis syntax:
>>> b = np.abs(a[..., np.newaxis] - choices)
array([[[ 1, 5, 10],
[ 1, 5, 10],
[ 1, 5, 10]],
[[ 3, 1, 6],
[ 3, 1, 6],
[ 3, 1, 6]],
[[ 8, 4, 1],
[ 8, 4, 1],
[ 8, 4, 1]]])
Taking argmin
along the axis you just created (the last axis, with label -1) gives you the desired index in choices
that you want to substitute:
>>> np.argmin(b, axis=-1)
array([[0, 0, 0],
[1, 1, 1],
[2, 2, 2]])
Which finally allows you to choose those elements from choices
:
>>> d = choices[np.argmin(b, axis=-1)]
>>> d
array([[ 1, 1, 1],
[ 5, 5, 5],
[10, 10, 10]])
For a non-symmetric shape:
Let's say a
had shape (2, 5)
:
>>> a = np.arange(10).reshape((2, 5))
>>> a
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
Then you'd get:
>>> b = np.abs(a[..., np.newaxis] - choices)
>>> b
array([[[ 1, 5, 10],
[ 0, 4, 9],
[ 1, 3, 8],
[ 2, 2, 7],
[ 3, 1, 6]],
[[ 4, 0, 5],
[ 5, 1, 4],
[ 6, 2, 3],
[ 7, 3, 2],
[ 8, 4, 1]]])
This is hard to read, but what it's saying is, b
has shape:
>>> b.shape
(2, 5, 3)
The first two dimensions came from the shape of a
, which is also (2, 5)
. The last dimension is the one you just created. To get a better idea:
>>> b[:, :, 0] # = abs(a - 1)
array([[1, 0, 1, 2, 3],
[4, 5, 6, 7, 8]])
>>> b[:, :, 1] # = abs(a - 5)
array([[5, 4, 3, 2, 1],
[0, 1, 2, 3, 4]])
>>> b[:, :, 2] # = abs(a - 10)
array([[10, 9, 8, 7, 6],
[ 5, 4, 3, 2, 1]])
Note how b[:, :, i]
is the absolute difference between a
and choices[i]
, for each i = 1, 2, 3
.
Hope that helps explain this a little more clearly.