I took your code and converted into a complete program. It's larger than an MCVE because it has support code for shuffling arrays, and for printing results, as well as a main()
that exercises these, of course.
#include <stdio.h>
#include <stdlib.h>
static int rand_int(int n)
{
int limit = RAND_MAX - RAND_MAX % n;
int rnd;
while ((rnd = rand()) >= limit)
;
return rnd % n;
}
static void shuffle(int *array, int n)
{
for (int i = n - 1; i > 0; i--)
{
int j = rand_int(i + 1);
int tmp = array[j];
array[j] = array[i];
array[i] = tmp;
}
}
static void print_array(int n, int a[n])
{
for (int i = 0; i < n; i++)
printf(" %d", a[i]);
putchar('\n');
}
static void sort(int values[], int n)
{
for (int k = 0; k < n; k++)
{
for (int j = 0; j < n; j++)
{
if (values[k] >= values[j])
{
int temp = values[k];
values[k] = values[j];
values[j] = temp;
}
}
}
}
int main(int argc, char **argv)
{
if (argc > 1)
{
long l = strtol(argv[1], 0, 0);
unsigned u = (unsigned)l;
printf("Seed: %u\n", u);
srand(u);
}
int data3[3] = { 3, 1, 2 };
print_array(3, data3);
sort(data3, 3);
print_array(3, data3);
int data5[5] = { 0, 2, 6, 1, 5, };
for (int i = 0; i < 5; i++)
{
shuffle(data5, 5);
print_array(5, data5);
sort(data5, 5);
print_array(5, data5);
}
int data9[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (int i = 0; i < 9; i++)
{
shuffle(data9, 9);
print_array(9, data9);
sort(data9, 9);
print_array(9, data9);
}
return 0;
}
The shuffle code implements a Fisher-Yates shuffle, and is
based on code from an answer by Roland Illig. If invoked without a seed argument, it generates the same output each time.
Code compiled and tested on macOS Sierra 10.12.1 with GCC 6.2.0.
An example output:
Seed: 123456789
3 1 2
3 2 1
6 0 1 5 2
6 5 2 1 0
0 6 1 2 5
6 5 2 1 0
0 1 2 6 5
6 5 2 1 0
5 0 6 1 2
6 5 2 1 0
1 6 5 2 0
6 5 2 1 0
0 4 8 3 7 5 1 6 2
8 7 6 5 4 3 2 1 0
7 4 0 5 6 8 3 2 1
8 7 6 5 4 3 2 1 0
1 2 7 5 0 8 3 6 4
8 7 6 5 4 3 2 1 0
3 8 7 5 2 1 0 6 4
8 7 6 5 4 3 2 1 0
1 4 2 6 3 0 7 5 8
8 7 6 5 4 3 2 1 0
2 3 7 4 8 0 5 6 1
8 7 6 5 4 3 2 1 0
3 4 5 8 6 2 0 7 1
8 7 6 5 4 3 2 1 0
3 6 7 4 8 2 5 1 0
8 7 6 5 4 3 2 1 0
0 8 7 3 4 6 5 1 2
8 7 6 5 4 3 2 1 0
This shows the data being sorted in descending order every time, despite different randomized inputs.