This is Faster R-CNN implement in tensorflow.
The proposal_layer is implement by python
i am curious about if gradient can pass by tf.py_func
the weights and biases are keep changing
so I think the gradient deliver back successful
Then I do a small test
import tensorflow as tf
import numpy as np
def addone(x):
# print type(x)
return x + 1
def pyfunc_test():
# create data
x_data = tf.placeholder(dtype=tf.float32, shape=[None])
y_data = tf.placeholder(dtype=tf.float32, shape=[None])
w = tf.Variable(tf.constant([0.5]))
b = tf.Variable(tf.zeros([1]))
y1 = tf.mul(w, x_data, name='y1')
y2 = tf.py_func(addone, [y1], tf.float32)
y = tf.add(y2, b)
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in xrange(201):
ran = np.random.rand(115).astype(np.float32)
ans = ran * 1.5 + 3
dic = {x_data: ran, y_data: ans}
tt, yy, yy1= sess.run([train, y1, y2], feed_dict=dic)
if step % 20 == 0:
print 'step {}'.format(step)
print '{}, {}'.format(w.eval(), b.eval())
test = sess.run(y, feed_dict={x_data:[1]})
print 'test = {}'.format(test)
if __name__ == '__main__':
pyfunc_test()
Variable b
keep changing, but w
keep the value after initialize and never change
sess.run(tf.gradients(loss, b), feed_dict=dic)
get value
sess.run(tf.gradients(loss, w), feed_dict=dic)
get {TypeError}Fetch argument None has invalid type <type 'NoneType'>
I know some questions suggest use tf.RegisterGradient
and gradient_override_map
but I can't find these in the faster rcnn repo(link on top of post)
am I do something wrong or missing something so that w
is freeze