65
df
     A     B  
0   a=10   b=20.10
1   a=20   NaN
2   NaN    b=30.10
3   a=40   b=40.10

I tried :

df['A'] = df['A'].str.extract('(\d+)').astype(int)
df['B'] = df['B'].str.extract('(\d+)').astype(float)

But I get the following error:

ValueError: cannot convert float NaN to integer

And:

AttributeError: Can only use .str accessor with string values, which use np.object_ dtype in pandas

How do I fix this ?

IanS
  • 15,771
  • 9
  • 60
  • 84
Sun
  • 1,855
  • 5
  • 21
  • 26
  • 1
    Firstly `NaN` can only be represented by float so you can't cast to `int` in that case, second if you have mixed dtypes for instance string and some other thing then using ``str.extract` will fail, although mixed dtypes are supported, it's not a good idea as it leads to errors. You should decide what the final dtype should be and replace the missing values that makes sense to you – EdChum Jan 09 '17 at 15:02

2 Answers2

80

If some values in column are missing (NaN) and then converted to numeric, always dtype is float. You cannot convert values to int. Only to float, because type of NaN is float.

print (type(np.nan))
<class 'float'>

See docs how convert values if at least one NaN:

integer > cast to float64

If need int values you need replace NaN to some int, e.g. 0 by fillna and then it works perfectly:

df['A'] = df['A'].str.extract('(\d+)', expand=False)
df['B'] = df['B'].str.extract('(\d+)', expand=False)
print (df)
     A    B
0   10   20
1   20  NaN
2  NaN   30
3   40   40

df1 = df.fillna(0).astype(int)
print (df1)
    A   B
0  10  20
1  20   0
2   0  30
3  40  40

print (df1.dtypes)
A    int32
B    int32
dtype: object
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252
28

From pandas >= 0.24 there is now a built-in pandas integer.
This does allow integer nan's, so you don't need to fill na's.
Notice the capital in 'Int64' in the code below.
This is the pandas integer, instead of the numpy integer.

You need to use: .astype('Int64')

So, do this:

df['A'] = df['A'].str.extract('(\d+)', expand=False).astype('float').astype('Int64')
df['B'] = df['B'].str.extract('(\d+)', expand=False).astype('float').astype('Int64')

More info on pandas integer na values:
https://pandas.pydata.org/pandas-docs/stable/user_guide/gotchas.html#nan-integer-na-values-and-na-type-promotions

Sander van den Oord
  • 10,986
  • 5
  • 51
  • 96