120

I have a string. I want to generate all permutations from that string, by changing the order of characters in it. For example, say:

x='stack'

what I want is a list like this,

l=['stack','satck','sackt'.......]

Currently I am iterating on the list cast of the string, picking 2 letters randomly and transposing them to form a new string, and adding it to set cast of l. Based on the length of the string, I am calculating the number of permutations possible and continuing iterations till set size reaches the limit. There must be a better way to do this.

Nihar Sarangi
  • 4,845
  • 8
  • 27
  • 32

28 Answers28

183

The itertools module has a useful method called permutations(). The documentation says:

itertools.permutations(iterable[, r])

Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length permutations are generated.

Permutations are emitted in lexicographic sort order. So, if the input iterable is sorted, the permutation tuples will be produced in sorted order.

You'll have to join your permuted letters as strings though.

>>> from itertools import permutations
>>> perms = [''.join(p) for p in permutations('stack')]
>>> perms

['stack', 'stakc', 'stcak', 'stcka', 'stkac', 'stkca', 'satck', 'satkc', 'sactk', 'sackt', 'saktc', 'sakct', 'sctak', 'sctka', 'scatk', 'scakt', 'sckta', 'sckat', 'sktac', 'sktca', 'skatc', 'skact', 'skcta', 'skcat', 'tsack', 'tsakc', 'tscak', 'tscka', 'tskac', 'tskca', 'tasck', 'taskc', 'tacsk', 'tacks', 'taksc', 'takcs', 'tcsak', 'tcska', 'tcask', 'tcaks', 'tcksa', 'tckas', 'tksac', 'tksca', 'tkasc', 'tkacs', 'tkcsa', 'tkcas', 'astck', 'astkc', 'asctk', 'asckt', 'asktc', 'askct', 'atsck', 'atskc', 'atcsk', 'atcks', 'atksc', 'atkcs', 'acstk', 'acskt', 'actsk', 'actks', 'ackst', 'ackts', 'akstc', 'aksct', 'aktsc', 'aktcs', 'akcst', 'akcts', 'cstak', 'cstka', 'csatk', 'csakt', 'cskta', 'cskat', 'ctsak', 'ctska', 'ctask', 'ctaks', 'ctksa', 'ctkas', 'castk', 'caskt', 'catsk', 'catks', 'cakst', 'cakts', 'cksta', 'cksat', 'cktsa', 'cktas', 'ckast', 'ckats', 'kstac', 'kstca', 'ksatc', 'ksact', 'kscta', 'kscat', 'ktsac', 'ktsca', 'ktasc', 'ktacs', 'ktcsa', 'ktcas', 'kastc', 'kasct', 'katsc', 'katcs', 'kacst', 'kacts', 'kcsta', 'kcsat', 'kctsa', 'kctas', 'kcast', 'kcats']

If you find yourself troubled by duplicates, try fitting your data into a structure with no duplicates like a set:

>>> perms = [''.join(p) for p in permutations('stacks')]
>>> len(perms)
720
>>> len(set(perms))
360

Thanks to @pst for pointing out that this is not what we'd traditionally think of as a type cast, but more of a call to the set() constructor.

machine yearning
  • 9,889
  • 5
  • 38
  • 51
  • 3
    Nit: `set(...)` does not "cast". Rather, it generates (and yields) the set representing the input collection: once generated it has no association with the input collection (and is a different object, not just a different view). –  Nov 29 '11 at 06:29
  • @pst: Hmm I'd tend to disagree. I know in Ada or Pascal that a cast is just a new type-view on the same bits. However at least from a C perspective, casting is an appropriate term whether or not you're changing the underlying structure of the data. It simply refers to explicit type conversion. Please explain away my misunderstanding if you can. – machine yearning Nov 29 '11 at 06:39
  • 1
    [Typecasting](http://en.wikipedia.org/wiki/Type_conversion). While, as you point out, it may be different than a mere view, I like to try and keep concepts separated to avoid confusion. I should have mentioned "coercion" explicitly in my first comment, although I'd just consider set a function: list -> set. –  Nov 29 '11 at 06:51
  • 1
    @pst: From [the docs](http://docs.python.org/library/stdtypes.html#boolean-values) _The built-in function bool() can be used to cast any value to a Boolean, if the value can be interpreted as a truth value_ This means it is a cast even though there is obvious data loss and structural change. It now quacks like a boolean though. – machine yearning Nov 29 '11 at 06:53
  • 1
    I view it, `bool`, is a function that *evaluates* to a bool (True/False) *depending* upon the input. I find the use of "cast" here is spurious and misleading... –  Nov 29 '11 at 06:55
  • Thank you for the clarification, please let me know if it makes more sense to you now. (edited answer) – machine yearning Nov 29 '11 at 06:56
  • 1
    As an interesting update, the documentation has since been changed to say *The built-in function bool() can be used to convert any value to a Boolean*, specifically convert rather than cast. This happened in the subsequent release to this discussion, leading me to believe that this discussion lead to a change in the docs! – machine yearning Oct 09 '15 at 15:12
  • In order to remove duplicates the single line approach is to use set comprehension as opposed to list comprehension. The code is perms = {''.join(p) for p in permutations('stacks')} – Nilav Baran Ghosh Oct 05 '18 at 05:51
  • @machine yearing:Have you ever heard of "recursion"? It's what's generally expected during an interview when solving problems. Not some black box solution (itertools) that requires no thought. Problem solving shows that you have the ability to think and figure things out on your own and come up with original solutions. – Max Eisenhardt Feb 22 '22 at 19:59
59

You can get all N! permutations without much code

def permutations(string, step = 0):

    # if we've gotten to the end, print the permutation
    if step == len(string):
        print "".join(string)

    # everything to the right of step has not been swapped yet
    for i in range(step, len(string)):

        # copy the string (store as array)
        string_copy = [character for character in string]

        # swap the current index with the step
        string_copy[step], string_copy[i] = string_copy[i], string_copy[step]

        # recurse on the portion of the string that has not been swapped yet (now it's index will begin with step + 1)
        permutations(string_copy, step + 1)
illerucis
  • 737
  • 5
  • 2
  • nice one. Works perfectly – kishorer747 Nov 28 '14 at 17:46
  • 1
    I just slightly modified it, we don't need to swap the variables if i == step – work_in_progress Nov 15 '15 at 17:45
  • 4
    The runtime is O(n!) because there are n! permutations. – Adrienne Jan 17 '16 at 03:19
  • Why are you using `step == len(string)` instead of `step == len(string) - 1`? – tulians Dec 15 '16 at 01:58
  • Because then the last 2 items would never be swapped. Try 'abc' until b and c get swapped. – Roman Riesen Aug 02 '17 at 09:46
  • Without an else or a return in the if statement won't it needlessly run the for loop? I guess the for loop would just be like: `for i in range(x, x)` so it will not go anywhere ;) Cleaver, nice lifehack; less readable, but reminds me of gating so (even though it isn't gating, the code below it still runs, it just doesn't do anything) – CTS_AE May 18 '20 at 12:19
33

Here is another way of doing the permutation of string with minimal code based on bactracking. We basically create a loop and then we keep swapping two characters at a time, Inside the loop we'll have the recursion. Notice,we only print when indexers reaches the length of our string. Example: ABC i for our starting point and our recursion param j for our loop

here is a visual help how it works from left to right top to bottom (is the order of permutation)

enter image description here

the code :

def permute(data, i, length): 
    if i==length: 
        print(''.join(data) )
    else: 
        for j in range(i,length): 
            #swap
            data[i], data[j] = data[j], data[i] 
            permute(data, i+1, length) 
            data[i], data[j] = data[j], data[i]  
  

string = "ABC"
n = len(string) 
data = list(string) 
permute(data, 0, n)
grepit
  • 21,260
  • 6
  • 105
  • 81
  • 7
    It might be helpful to mention that this is the basis of *bactracking* paradigm. – AruniRC Jul 22 '19 at 04:25
  • More info, same/similar codes: https://www.geeksforgeeks.org/write-a-c-program-to-print-all-permutations-of-a-given-string/ I like your example better though with the graphic example ;) – CTS_AE May 18 '20 at 12:06
  • this is great way to understand but the code is computationally expensive and fails the codewars. – Ali Waqas Sep 03 '22 at 03:12
11

Stack Overflow users have already posted some strong solutions but I wanted to show yet another solution. This one I find to be more intuitive

The idea is that for a given string: we can recurse by the algorithm (pseudo-code):

permutations = char + permutations(string - char) for char in string

I hope it helps someone!

def permutations(string):
    """
    Create all permutations of a string with non-repeating characters
    """
    permutation_list = []
    if len(string) == 1:
        return [string]
    else:
        for char in string:
            [permutation_list.append(char + a) for a in permutations(string.replace(char, "", 1))]
    return permutation_list
Jeremy
  • 1,894
  • 2
  • 13
  • 22
BushMinusZero
  • 1,202
  • 16
  • 21
9

Here's a simple function to return unique permutations:

def permutations(string):
    if len(string) == 1:
        return string

    recursive_perms = []
    for c in string:
        for perm in permutations(string.replace(c,'',1)):
            recursive_perms.append(c+perm)

    return set(recursive_perms)
pppery
  • 3,731
  • 22
  • 33
  • 46
ArashkG
  • 147
  • 2
  • 7
  • 8
    1. You have a typo: `revursive_perms` -> `recursive_perms`. 2. It would save RAM and time if `recursive_perms` were a set rather than a list which you convert to a set in the return statement. 3. It would be more efficient to use string slicing instead of `.replace` to construct the arg to the recursive call of `permutations`. 4. It's not a good idea to use `string` as a variable name because that shadows the name of the standard `string` module. – PM 2Ring Mar 25 '17 at 09:17
7

itertools.permutations is good, but it doesn't deal nicely with sequences that contain repeated elements. That's because internally it permutes the sequence indices and is oblivious to the sequence item values.

Sure, it's possible to filter the output of itertools.permutations through a set to eliminate the duplicates, but it still wastes time generating those duplicates, and if there are several repeated elements in the base sequence there will be lots of duplicates. Also, using a collection to hold the results wastes RAM, negating the benefit of using an iterator in the first place.

Fortunately, there are more efficient approaches. The code below uses the algorithm of the 14th century Indian mathematician Narayana Pandita, which can be found in the Wikipedia article on Permutation. This ancient algorithm is still one of the fastest known ways to generate permutations in order, and it is quite robust, in that it properly handles permutations that contain repeated elements.

def lexico_permute_string(s):
    ''' Generate all permutations in lexicographic order of string `s`

        This algorithm, due to Narayana Pandita, is from
        https://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order

        To produce the next permutation in lexicographic order of sequence `a`

        1. Find the largest index j such that a[j] < a[j + 1]. If no such index exists, 
        the permutation is the last permutation.
        2. Find the largest index k greater than j such that a[j] < a[k].
        3. Swap the value of a[j] with that of a[k].
        4. Reverse the sequence from a[j + 1] up to and including the final element a[n].
    '''

    a = sorted(s)
    n = len(a) - 1
    while True:
        yield ''.join(a)

        #1. Find the largest index j such that a[j] < a[j + 1]
        for j in range(n-1, -1, -1):
            if a[j] < a[j + 1]:
                break
        else:
            return

        #2. Find the largest index k greater than j such that a[j] < a[k]
        v = a[j]
        for k in range(n, j, -1):
            if v < a[k]:
                break

        #3. Swap the value of a[j] with that of a[k].
        a[j], a[k] = a[k], a[j]

        #4. Reverse the tail of the sequence
        a[j+1:] = a[j+1:][::-1]

for s in lexico_permute_string('data'):
    print(s)

output

aadt
aatd
adat
adta
atad
atda
daat
data
dtaa
taad
tada
tdaa

Of course, if you want to collect the yielded strings into a list you can do

list(lexico_permute_string('data'))

or in recent Python versions:

[*lexico_permute_string('data')]
PM 2Ring
  • 54,345
  • 6
  • 82
  • 182
6

Here is another approach different from what @Adriano and @illerucis posted. This has a better runtime, you can check that yourself by measuring the time:

def removeCharFromStr(str, index):
    endIndex = index if index == len(str) else index + 1
    return str[:index] + str[endIndex:]

# 'ab' -> a + 'b', b + 'a'
# 'abc' ->  a + bc, b + ac, c + ab
#           a + cb, b + ca, c + ba
def perm(str):
    if len(str) <= 1:
        return {str}
    permSet = set()
    for i, c in enumerate(str):
        newStr = removeCharFromStr(str, i)
        retSet = perm(newStr)
        for elem in retSet:
            permSet.add(c + elem)
    return permSet

For an arbitrary string "dadffddxcf" it took 1.1336 sec for the permutation library, 9.125 sec for this implementation and 16.357 secs for @Adriano's and @illerucis' version. Of course you can still optimize it.

Rooky
  • 810
  • 3
  • 12
  • 20
3

Here's a slightly improved version of illerucis's code for returning a list of all permutations of a string s with distinct characters (not necessarily in lexicographic sort order), without using itertools:

def get_perms(s, i=0):
    """
    Returns a list of all (len(s) - i)! permutations t of s where t[:i] = s[:i].
    """
    # To avoid memory allocations for intermediate strings, use a list of chars.
    if isinstance(s, str):
        s = list(s)

    # Base Case: 0! = 1! = 1.
    # Store the only permutation as an immutable string, not a mutable list.
    if i >= len(s) - 1:
        return ["".join(s)]

    # Inductive Step: (len(s) - i)! = (len(s) - i) * (len(s) - i - 1)!
    # Swap in each suffix character to be at the beginning of the suffix.
    perms = get_perms(s, i + 1)
    for j in range(i + 1, len(s)):
        s[i], s[j] = s[j], s[i]
        perms.extend(get_perms(s, i + 1))
        s[i], s[j] = s[j], s[i]
    return perms
Community
  • 1
  • 1
Adriano
  • 1,697
  • 24
  • 27
2

why do you not simple do:

from itertools import permutations
perms = [''.join(p) for p in permutations(['s','t','a','c','k'])]
print perms
print len(perms)
print len(set(perms))

you get no duplicate as you can see :

 ['stack', 'stakc', 'stcak', 'stcka', 'stkac', 'stkca', 'satck', 'satkc', 
'sactk', 'sackt', 'saktc', 'sakct', 'sctak', 'sctka', 'scatk', 'scakt', 'sckta',
 'sckat', 'sktac', 'sktca', 'skatc', 'skact', 'skcta', 'skcat', 'tsack', 
'tsakc', 'tscak', 'tscka', 'tskac', 'tskca', 'tasck', 'taskc', 'tacsk', 'tacks', 
'taksc', 'takcs', 'tcsak', 'tcska', 'tcask', 'tcaks', 'tcksa', 'tckas', 'tksac', 
'tksca', 'tkasc', 'tkacs', 'tkcsa', 'tkcas', 'astck', 'astkc', 'asctk', 'asckt', 
'asktc', 'askct', 'atsck', 'atskc', 'atcsk', 'atcks', 'atksc', 'atkcs', 'acstk', 
'acskt', 'actsk', 'actks', 'ackst', 'ackts', 'akstc', 'aksct', 'aktsc', 'aktcs', 
'akcst', 'akcts', 'cstak', 'cstka', 'csatk', 'csakt', 'cskta', 'cskat', 'ctsak', 
'ctska', 'ctask', 'ctaks', 'ctksa', 'ctkas', 'castk', 'caskt', 'catsk', 'catks', 
'cakst', 'cakts', 'cksta', 'cksat', 'cktsa', 'cktas', 'ckast', 'ckats', 'kstac', 
'kstca', 'ksatc', 'ksact', 'kscta', 'kscat', 'ktsac', 'ktsca', 'ktasc', 'ktacs', 
'ktcsa', 'ktcas', 'kastc', 'kasct', 'katsc', 'katcs', 'kacst', 'kacts', 'kcsta', 
'kcsat', 'kctsa', 'kctas', 'kcast', 'kcats']
    120
    120
    [Finished in 0.3s]
Vincenzo
  • 85
  • 12
  • 6
    No, you **always** get duplicates (or worse) if you have two or more same letters. That was the case in @machineyearning’s example, as he used the word **stacks** instead of **stack**. That means: Your solution only works for words with unique characters in it. – erik Jan 09 '16 at 17:10
2
def permute(seq):
    if not seq:
        yield seq
    else:
        for i in range(len(seq)):
            rest = seq[:i]+seq[i+1:]
            for x in permute(rest):
                yield seq[i:i+1]+x

print(list(permute('stack')))
this.srivastava
  • 1,045
  • 12
  • 22
2

All Possible Word with stack

from itertools import permutations
for i in permutations('stack'):
    print(''.join(i))
permutations(iterable, r=None)

Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length permutations are generated.

Permutations are emitted in lexicographic sort order. So, if the input iterable is sorted, the permutation tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique, there will be no repeat values in each permutation.

Deepak Raj
  • 462
  • 5
  • 15
2

See itertools.combinations or itertools.permutations.

Brian Cain
  • 14,403
  • 3
  • 50
  • 88
  • 4
    combinations is not relevant to his problem. he is transposing letters, which means order is relevant, which means only permutations – machine yearning Nov 29 '11 at 06:20
1

Yet another initiative and recursive solution. The idea is to select a letter as a pivot and then create a word.

def find_premutations(alphabet):
    
    words = []
    word =''
    
    def premute(new_word, alphabet):
        if not alphabet:
            words.append(word)
        else:
            for i in range(len(alphabet)):
                premute(new_word=word + alphabet[i], alphabet=alphabet[0:i] + alphabet[i+1:])

    premute(word, alphabet)
    return words


# let us try it with 'abc'
a = 'abc'
find_premutations(a)

Output:

abc
acb
bac
bca
cab
cba
Faroq AL-Tam
  • 495
  • 5
  • 10
1

This is a recursive solution with n! which accepts duplicate elements in the string

import math

def getFactors(root,num):
    sol = []
    # return condition
    if len(num) == 1:
            return [root+num]
    # looping in next iteration
    for i in range(len(num)):  
        # Creating a substring with all remaining char but the taken in this iteration
        if i > 0:
            rem = num[:i]+num[i+1:]
        else:
            rem = num[i+1:]
        # Concatenating existing solutions with the solution of this iteration
        sol = sol + getFactors(root + num[i], rem)
    return sol

I validated the solution taking into account two elements, the number of combinations is n! and the result can not contain duplicates. So:

inpt = "1234"
results = getFactors("",inpt)

if len(results) == math.factorial(len(inpt)) | len(results) != len(set(results)):
    print("Wrong approach")
else:
    print("Correct Approach")
Ignacio Alorre
  • 7,307
  • 8
  • 57
  • 94
1

With recursive approach.

def permute(word):
    if len(word) == 1:
        return [word]
    permutations = permute(word[1:])
    character = word[0]
    result = []
    for p in permutations:
        for i in range(len(p)+1):
            result.append(p[:i] + character + p[i:])
    return result




running code.

>>> permute('abc')
['abc', 'bac', 'bca', 'acb', 'cab', 'cba']
0

Here's a simple and straightforward recursive implementation;

def stringPermutations(s):
    if len(s) < 2:
        yield s
        return
    for pos in range(0, len(s)):
        char = s[pos]
        permForRemaining = list(stringPermutations(s[0:pos] + s[pos+1:]))
        for perm in permForRemaining:
            yield char + perm
Community
  • 1
  • 1
iBe
  • 59
  • 6
  • 1
    You should fix the indentation. There's no need to save the results of the recursive call to `stringPermutations` in a list - you can iterate directly over it, eg `for perm in stringPermutations(s[:pos] + s[pos+1:]):`. Also, you can simplify the `for` loop by using `enumerate` instead of `range`, and eliminate the `char = s[pos]` assignment: `for pos, char in enumerate(s):`. – PM 2Ring Mar 25 '17 at 10:06
0

Here's a really simple generator version:

def find_all_permutations(s, curr=[]):
    if len(s) == 0:
        yield curr
    else:
        for i, c in enumerate(s):
            for combo in find_all_permutations(s[:i]+s[i+1:], curr + [c]):
                yield "".join(combo)

I think it's not so bad!

Gritty Kitty
  • 297
  • 2
  • 12
0
def f(s):
  if len(s) == 2:
    X = [s, (s[1] + s[0])]
      return X
else:
    list1 = []
    for i in range(0, len(s)):
        Y = f(s[0:i] + s[i+1: len(s)])
        for j in Y:
            list1.append(s[i] + j)
    return list1
s = raw_input()
z = f(s)
print z
0
from itertools import permutations
perms = [''.join(p) for p in permutations('ABC')]

perms = [''.join(p) for p in permutations('stack')]
DJK
  • 8,924
  • 4
  • 24
  • 40
0
def perm(string):
   res=[]
   for j in range(0,len(string)):
       if(len(string)>1):
           for i in perm(string[1:]):
               res.append(string[0]+i)
       else:
           return [string];
       string=string[1:]+string[0];
   return res;
l=set(perm("abcde"))

This is one way to generate permutations with recursion, you can understand the code easily by taking strings 'a','ab' & 'abc' as input.

You get all N! permutations with this, without duplicates.

Jasser
  • 203
  • 2
  • 11
0

Everyone loves the smell of their own code. Just sharing the one I find the simplest:

def get_permutations(word):
    if len(word) == 1:
        yield word

    for i, letter in enumerate(word):
        for perm in get_permutations(word[:i] + word[i+1:]):
            yield letter + perm
r_2
  • 1,640
  • 1
  • 11
  • 11
0

This program does not eliminate the duplicates, but I think it is one of the most efficient approaches:

s=raw_input("Enter a string: ")
print "Permutations :\n",s
size=len(s)
lis=list(range(0,size))
while(True):
    k=-1
    while(k>-size and lis[k-1]>lis[k]):
        k-=1
    if k>-size:
        p=sorted(lis[k-1:])
        e=p[p.index(lis[k-1])+1]
        lis.insert(k-1,'A')
        lis.remove(e)
        lis[lis.index('A')]=e
        lis[k:]=sorted(lis[k:])
        list2=[]
        for k in lis:
                list2.append(s[k])
        print "".join(list2)
    else:
                break
KramerDK
  • 15
  • 7
0

With Recursion

# swap ith and jth character of string
def swap(s, i, j):
    q = list(s)
    q[i], q[j] = q[j], q[i]
    return ''.join(q)


# recursive function 
def _permute(p, s, permutes):
    if p >= len(s) - 1:
        permutes.append(s)
        return

    for i in range(p, len(s)):
        _permute(p + 1, swap(s, p, i), permutes)


# helper function
def permute(s):
    permutes = []
    _permute(0, s, permutes)
    return permutes


# TEST IT
s = "1234"
all_permute = permute(s)
print(all_permute)

With Iterative approach (Using Stack)

# swap ith and jth character of string
def swap(s, i, j):
    q = list(s)
    q[i], q[j] = q[j], q[i]
    return ''.join(q)


# iterative function
def permute_using_stack(s):
    stk = [(0, s)]

    permutes = []

    while len(stk) > 0:
        p, s = stk.pop(0)

        if p >= len(s) - 1:
            permutes.append(s)
            continue

        for i in range(p, len(s)):
            stk.append((p + 1, swap(s, p, i)))

    return permutes


# TEST IT
s = "1234"
all_permute = permute_using_stack(s)
print(all_permute)

With Lexicographically sorted

# swap ith and jth character of string
def swap(s, i, j):
    q = list(s)
    q[i], q[j] = q[j], q[i]
    return ''.join(q)


# finds next lexicographic string if exist otherwise returns -1
def next_lexicographical(s):
    for i in range(len(s) - 2, -1, -1):
        if s[i] < s[i + 1]:
            m = s[i + 1]
            swap_pos = i + 1

            for j in range(i + 1, len(s)):
                if m > s[j] > s[i]:
                    m = s[j]
                    swap_pos = j

            if swap_pos != -1:
                s = swap(s, i, swap_pos)
                s = s[:i + 1] + ''.join(sorted(s[i + 1:]))
                return s

    return -1


# helper function
def permute_lexicographically(s):
    s = ''.join(sorted(s))
    permutes = []
    while True:
        permutes.append(s)
        s = next_lexicographical(s)
        if s == -1:
            break
    return permutes


# TEST IT
s = "1234"
all_permute = permute_lexicographically(s)
print(all_permute)
bikram
  • 7,127
  • 2
  • 51
  • 63
0

This code makes sense to me. The logic is to loop through all characters, extract the ith character, perform the permutation on the other elements and append the ith character at the beginning.

If i'm asked to get all permutations manually for string ABC. I would start by checking all combinations of element A:

  • A AB
  • A BC

Then all combinations of element B:

  • B AC
  • B CA

Then all combinations of element C:

  • C AB
  • C BA
def permute(s: str):
  n = len(s)
  if n == 1: return [s]
  if n == 2:
    return [s[0]+s[1], s[1]+s[0]]

  permutations = []
  for i in range(0, n):
    current = s[i]
    others = s[:i] + s[i+1:]

    otherPermutations = permute(others)
    for op in otherPermutations:
      permutations.append(current + op)

  return permutations
0

Just to tidy up a bit on machine yearning's answer for the cases with duplicates: as set is an unordered data structure, so it does not preserve the order. To produce a list that starts with the input word:

from itertools import permutations

x = "stacks"
perms = list(set([''.join(char) for char in permutations(x)]))
perms.insert(0, perms.pop(perms.index(x)))
perms
  • Seems very half-measured to only care about the first. I'd simply do `perms = list(dict.fromkeys(map(''.join, permutations(x))))` or maybe `perms = list(map(''.join, dict.fromkeys(permutations(x))))`. – Kelly Bundy Mar 30 '23 at 13:37
-1

Simpler solution using permutations.

from itertools import permutations

def stringPermutate(s1):
    length=len(s1)
    if length < 2:
        return s1

    perm = [''.join(p) for p in permutations(s1)]

    return set(perm)
Nelson Katale
  • 1,309
  • 15
  • 21
-2
def permute_all_chars(list, begin, end):

    if (begin == end):
        print(list)
        return

    for current_position in range(begin, end + 1):
        list[begin], list[current_position] = list[current_position], list[begin]
        permute_all_chars(list, begin + 1, end)
        list[begin], list[current_position] = list[current_position], list[begin]


given_str = 'ABC'
list = []
for char in given_str:
    list.append(char)
permute_all_chars(list, 0, len(list) -1)
-2

The itertools module in the standard library has a function for this which is simply called permutations.

import itertools

def minion_game(s):
    vow ="aeiou"
    lsword=[]
    ta=[]
    for a in range(1,len(s)+1):
        t=list(itertools.permutations(s,a))
        lsword.append(t)

    for i in range(0,len(lsword)):
        for xa in lsword[i]:
            if vow.startswith(xa):
                ta.append("".join(xa))

    print(ta)

minion_game("banana")
tripleee
  • 175,061
  • 34
  • 275
  • 318
Shyam Gupta
  • 489
  • 4
  • 8
  • Even after fixing this up, this seems to offer no improvement over https://stackoverflow.com/a/61117625/874188 from 2020 (but a lot of unnecessary code which is unrelated to the question). – tripleee Apr 01 '22 at 04:42