I'm just beginning my ML journey and have done a few tutorials. One thing that's not clear (to me) is how the 'filter' parameter is determined for Keras Conv2D.
Most sources I've read simply set the parameter to 32 without explanation. Is this just a rule of thumb or do the dimensions of the input images play a part? For example, the images in CIFAR-10 are 32x32
Specifically:
model = Sequential()
filters = 32
model.add(Conv2D(filters, (3, 3), padding='same', input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(filters, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
The next layer has a filter parameter of filter*2 or 64. Again, how is this calculated?
Tx.
Joe