I'm having an issue where a python class, which is derived from a c++ base class using pybind11, is being immediately destructed (garbage collected). I would like C++ to take ownership of the dynamically allocated object, but I can't seem to make that happen. I've tried keep_alive, passing shared_ptr<> as py::class_ template argument, and py::return_value_policy... nothing is working. I suspect this is just user error.
This is a simplification of the real issue I'm having with a much larger code base that is architected similarly. Changing the architecture is not an option, so making this example work is critical for me.
I have two c++ classes that I have created python interfaces for using pybind11. Class A and B both have virtual methods, so they have corresponding trampoline classes to support inheritance. The user calls the B::Run() function which results in a dynamically allocated (via new) A object to be created. When I create specializations of these two classes in python, as shown below.... Segmentation fault because the B::aBase is destroyed immediately after B::Run being called.
Any Ideas how to fix this? Thanks in advance!
class A
{
public:
A(){};
virtual ~A()
{
std::cout << "In A::~A()\n";
};
virtual char* SayHello()
{
char* x = "\n\nHello from Class A\n\n";
return x;
}
};
class ATramploline : public A
{
public:
using A::A;
char* SayHello() override
{
PYBIND11_OVERLOAD( char*,A,SayHello,);
}
};
class B
{
public:
B()
{
std::cout << "In Class B Constructor\n";
}
void Run()
{
aBase = AllocateAnAClass();
std::cout << aBase->SayHello();
}
virtual ~B()
{
fprintf(stderr,"About to delete aBase");
delete aBase;
}
A* aBase;
virtual A* AllocateAnAClass()
{
return new A;
}
};
class BTramploline : public B
{
public:
using B::B;
A* AllocateAnAClass() override
{
PYBIND11_OVERLOAD( A*,B,AllocateAnAClass,);
}
};
PYBIND11_MODULE(TestModule,m)
{
py::class_<A,ATramploline>(m,"A")
.def(py::init<>(),py::return_value_policy::reference_internal)
.def("SayHello",&A::SayHello);
py::class_<B,BTramploline>(m,"B")
.def(py::init<>())
.def("Run",&B::Run)
.def("AllocateAnAClass",&B::AllocateAnAClass,py::return_value_policy::reference_internal);
}
#!/usr/bin/python3
from TestModule import A,B
class MyA(A):
def __init__(self):
super().__init__()
print("Done with MyA Constructor")
def SayHello(self):
return '\n\nHello from Class MyA\n\n'
class MyB(B):
def __init__(self):
super().__init__()
print("Done With MyB Constructor")
def AllocateAnAClass(self):
print("In MyB::AllocateAnAClass!!!")
return MyA()
#x = B()
#x.Run()
y = MyB()
y.Run()
print("done with test script\n")