I want to use one of the pre-built keras' models (vgg, inception, resnet, etc) included in tf.keras.application
for feature extraction to save me some time training.
What is the correct way to do this inside of an estimator model function?
This is what I currently have.
import tensorflow as tf
def model_fn(features, labels, mode):
# Import the pretrained model
base_model = tf.keras.applications.InceptionV3(
weights='imagenet',
include_top=False,
input_shape=(200,200,3)
)
# get the output features from InceptionV3
resnet_features = base_model.predict(features['x'])
# flatten and feed into dense layers
pool2_flat = tf.layers.flatten(resnet_features)
dense1 = tf.layers.dense(inputs=pool2_flat, units=5120, activation=tf.nn.relu)
# ... Add in N number of dense layers depending on my application
logits = tf.layers.dense(inputs=denseN, units=5)
# Calculate Loss
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=5)
loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels, logits=logits)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-3)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step()
)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
if __name__ == "__main__":
# import Xtrain and Ytrain
classifier = tf.estimator.Estimator(
model_fn=model_fn, model_dir="/tmp/conv_model")
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': Xtrain},
y=Ytrain,
batch_size=100,
num_epochs=None,
shuffle=True)
classifier.train(
input_fn=train_input_fn,
steps=100)
However, this code throws the error:
TypeError: unsupported operand type(s) for /: 'Dimension' and 'float'
at line resnet_features = base_model.predict(features['x'])
I think this is because the keras model is expecting a numpy array, but the estimator is passing in a tf.Tensor.
So, what is the correct way to use a keras model inside of an estimator. And, if you're not suppose to do this, what is the simplest way to leverage a pre-trained model for transfer learning in TF?