332

How do I add a horizontal line to an existing plot?

Trenton McKinney
  • 56,955
  • 33
  • 144
  • 158
Ibe
  • 5,615
  • 7
  • 32
  • 45

7 Answers7

859

Use axhline (a horizontal axis line). For example, this plots a horizontal line at y = 0.5:

import matplotlib.pyplot as plt
plt.axhline(y=0.5, color='r', linestyle='-')
plt.show()

sample figure

Mateen Ulhaq
  • 24,552
  • 19
  • 101
  • 135
BlivetWidget
  • 10,543
  • 1
  • 14
  • 23
83

If you want to draw a horizontal line in the axes, you might also try ax.hlines() method. You need to specify y position and xmin and xmax in the data coordinate (i.e, your actual data range in the x-axis). A sample code snippet is:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(1, 21, 200)
y = np.exp(-x)

fig, ax = plt.subplots()
ax.plot(x, y)
ax.hlines(y=0.2, xmin=4, xmax=20, linewidth=2, color='r')

plt.show()

The snippet above will plot a horizontal line in the axes at y=0.2. The horizontal line starts at x=4 and ends at x=20. The generated image is:

enter image description here

Trenton McKinney
  • 56,955
  • 33
  • 144
  • 158
jdhao
  • 24,001
  • 18
  • 134
  • 273
71

Use matplotlib.pyplot.hlines:

  • These methods are applicable to plots generated with seaborn and pandas.DataFrame.plot, which both use matplotlib.
  • Plot multiple horizontal lines by passing a list to the y parameter.
  • y can be passed as a single location: y=40
  • y can be passed as multiple locations: y=[39, 40, 41]
  • Also matplotlib.axes.Axes.hlines for the object oriented api.
    • If you're a plotting a figure with something like fig, ax = plt.subplots(), then replace plt.hlines or plt.axhline with ax.hlines or ax.axhline, respectively.
  • matplotlib.pyplot.axhline & matplotlib.axes.Axes.axhline can only plot a single location (e.g. y=40)
  • See this answer for vertical lines with .vlines

plt.plot

import numpy as np
import matplotlib.pyplot as plt

xs = np.linspace(1, 21, 200)

plt.figure(figsize=(6, 3))
plt.hlines(y=39.5, xmin=100, xmax=175, colors='aqua', linestyles='-', lw=2, label='Single Short Line')
plt.hlines(y=[39, 40, 41], xmin=[0, 25, 50], xmax=[len(xs)], colors='purple', linestyles='--', lw=2, label='Multiple Lines')
plt.legend(bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0)

enter image description here

ax.plot

import numpy as np
import matplotlib.pyplot as plt

xs = np.linspace(1, 21, 200)
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6))

ax1.hlines(y=40, xmin=0, xmax=len(xs), colors='r', linestyles='--', lw=2)
ax1.set_title('One Line')

ax2.hlines(y=[39, 40, 41], xmin=0, xmax=len(xs), colors='purple', linestyles='--', lw=2)
ax2.set_title('Multiple Lines')

plt.tight_layout()
plt.show()

enter image description here

Seaborn axis-level plot

import seaborn as sns

# sample data
fmri = sns.load_dataset("fmri")

# max y values for stim and cue
c_max, s_max = fmri.pivot_table(index='timepoint', columns='event', values='signal', aggfunc='mean').max()

# plot
g = sns.lineplot(data=fmri, x="timepoint", y="signal", hue="event")

# x min and max
xmin, ymax = g.get_xlim()

# vertical lines
g.hlines(y=[c_max, s_max], xmin=xmin, xmax=xmax, colors=['tab:orange', 'tab:blue'], ls='--', lw=2)

enter image description here

Seaborn figure-level plot

  • Each axes must be iterated through
import seaborn as sns

# sample data
fmri = sns.load_dataset("fmri")

# used to get the max values (y) for each event in each region
fpt = fmri.pivot_table(index=['region', 'timepoint'], columns='event', values='signal', aggfunc='mean')

# plot
g = sns.relplot(data=fmri, x="timepoint", y="signal", col="region",hue="event", style="event", kind="line")

# iterate through the axes
for ax in g.axes.flat:
    # get x min and max
    xmin, xmax = ax.get_xlim()  
    # extract the region from the title for use in selecting the index of fpt
    region = ax.get_title().split(' = ')[1]  
    # get x values for max event
    c_max, s_max = fpt.loc[region].max() 
    # add horizontal lines 
    ax.hlines(y=[c_max, s_max], xmin=xmin, xmax=xmax, colors=['tab:orange', 'tab:blue'], ls='--', lw=2, alpha=0.5)

enter image description here

Time Series Axis

  • xmin and xmax will accept a date like '2020-09-10' or datetime(2020, 9, 10)
    • Using from datetime import datetime
    • xmin=datetime(2020, 9, 10), xmax=datetime(2020, 9, 10) + timedelta(days=3)
    • Given date = df.index[9], xmin=date, xmax=date + pd.Timedelta(days=3), where the index is a DatetimeIndex.
  • The date column on the axis must be a datetime dtype. If using pandas, then use pd.to_datetime. For an array or list, refer to Converting numpy array of strings to datetime or Convert datetime list into date python, respectively.
import pandas_datareader as web  # conda or pip install this; not part of pandas
import pandas as pd
import matplotlib.pyplot as plt

# get test data; the Date index is already downloaded as datetime dtype
df = web.DataReader('^gspc', data_source='yahoo', start='2020-09-01', end='2020-09-28').iloc[:, :2]

# display(df.head(2))
                   High          Low
Date                                
2020-09-01  3528.030029  3494.600098
2020-09-02  3588.110107  3535.229980

# plot dataframe
ax = df.plot(figsize=(9, 6), title='S&P 500', ylabel='Price')

# add horizontal line
ax.hlines(y=3450, xmin='2020-09-10', xmax='2020-09-17', color='purple', label='test')

ax.legend()
plt.show()

enter image description here

  • Sample time series data if web.DataReader doesn't work.
data = {pd.Timestamp('2020-09-01 00:00:00'): {'High': 3528.03, 'Low': 3494.6}, pd.Timestamp('2020-09-02 00:00:00'): {'High': 3588.11, 'Low': 3535.23}, pd.Timestamp('2020-09-03 00:00:00'): {'High': 3564.85, 'Low': 3427.41}, pd.Timestamp('2020-09-04 00:00:00'): {'High': 3479.15, 'Low': 3349.63}, pd.Timestamp('2020-09-08 00:00:00'): {'High': 3379.97, 'Low': 3329.27}, pd.Timestamp('2020-09-09 00:00:00'): {'High': 3424.77, 'Low': 3366.84}, pd.Timestamp('2020-09-10 00:00:00'): {'High': 3425.55, 'Low': 3329.25}, pd.Timestamp('2020-09-11 00:00:00'): {'High': 3368.95, 'Low': 3310.47}, pd.Timestamp('2020-09-14 00:00:00'): {'High': 3402.93, 'Low': 3363.56}, pd.Timestamp('2020-09-15 00:00:00'): {'High': 3419.48, 'Low': 3389.25}, pd.Timestamp('2020-09-16 00:00:00'): {'High': 3428.92, 'Low': 3384.45}, pd.Timestamp('2020-09-17 00:00:00'): {'High': 3375.17, 'Low': 3328.82}, pd.Timestamp('2020-09-18 00:00:00'): {'High': 3362.27, 'Low': 3292.4}, pd.Timestamp('2020-09-21 00:00:00'): {'High': 3285.57, 'Low': 3229.1}, pd.Timestamp('2020-09-22 00:00:00'): {'High': 3320.31, 'Low': 3270.95}, pd.Timestamp('2020-09-23 00:00:00'): {'High': 3323.35, 'Low': 3232.57}, pd.Timestamp('2020-09-24 00:00:00'): {'High': 3278.7, 'Low': 3209.45}, pd.Timestamp('2020-09-25 00:00:00'): {'High': 3306.88, 'Low': 3228.44}, pd.Timestamp('2020-09-28 00:00:00'): {'High': 3360.74, 'Low': 3332.91}}

df = pd.DataFrame.from_dict(data, 'index')

Barplot and Histograms

  • Note that bar plot tick locations have a zero-based index, regardless of the axis tick labels, so select xmin and xmax based on the bar index, not the tick label.
    • ax.get_xticklabels() will show the locations and labels.
import pandas as pd
import seaborn as sns  # for tips data

# load data
tips = sns.load_dataset('tips')

# histogram
ax = tips.plot(kind='hist', y='total_bill', bins=30, ec='k', title='Histogram with Horizontal Line')
_ = ax.hlines(y=6, xmin=0, xmax=55, colors='r')

# barplot 
ax = tips.loc[5:25, ['total_bill', 'tip']].plot(kind='bar', figsize=(15, 4), title='Barplot with Vertical Lines', rot=0)
_ = ax.hlines(y=6, xmin=3, xmax=15, colors='r')

enter image description here

enter image description here

Trenton McKinney
  • 56,955
  • 33
  • 144
  • 158
22

In addition to the most upvoted answer here, one can also chain axhline after calling plot on a pandas's DataFrame.

import pandas as pd

(pd.DataFrame([1, 2, 3])
   .plot(kind='bar', color='orange')
   .axhline(y=1.5));

enter image description here

ayorgo
  • 2,803
  • 2
  • 25
  • 35
7

You are correct, I think the [0,len(xs)] is throwing you off. You'll want to reuse the original x-axis variable xs and plot that with another numpy array of the same length that has your variable in it.

annual = np.arange(1,21,1)
l = np.array(value_list) # a list with 20 values
spl = UnivariateSpline(annual,l)
xs = np.linspace(1,21,200)
plt.plot(xs,spl(xs),'b')

#####horizontal line
horiz_line_data = np.array([40 for i in xrange(len(xs))])
plt.plot(xs, horiz_line_data, 'r--') 
###########plt.plot([0,len(xs)],[40,40],'r--',lw=2)
pylab.ylim([0,200])
plt.show()

Hopefully that fixes the problem!

chill_turner
  • 499
  • 4
  • 6
  • 32
    This works, but it's not particularly efficient, especially as you're creating a potentially very large array depending on the data. If you're going to do it this way, it would be smarter to have two data points, one at the beginning and one at the end. Still, matplotlib already has a dedicated function for horizontal lines. – BlivetWidget Oct 28 '15 at 04:17
7

A nice and easy way for those people who always forget the command axhline is the following

plt.plot(x, [y]*len(x))

In your case xs = x and y = 40. If len(x) is large, then this becomes inefficient and you should really use axhline.

LSchueler
  • 1,414
  • 12
  • 23
3

You can use plt.grid to draw a horizontal line.

import numpy as np
from matplotlib import pyplot as plt
from scipy.interpolate import UnivariateSpline
from matplotlib.ticker import LinearLocator

# your data here
annual = np.arange(1,21,1)
l = np.random.random(20)
spl = UnivariateSpline(annual,l)
xs = np.linspace(1,21,200)

# plot your data
plt.plot(xs,spl(xs),'b')

# horizental line?
ax = plt.axes()
# three ticks:
ax.yaxis.set_major_locator(LinearLocator(3))
# plot grids only on y axis on major locations
plt.grid(True, which='major', axis='y')

# show
plt.show()

random data plot example

Mehdi
  • 4,202
  • 5
  • 20
  • 36