How do I add a horizontal line to an existing plot?
7 Answers
Use axhline
(a horizontal axis line). For example, this plots a horizontal line at y = 0.5
:
import matplotlib.pyplot as plt
plt.axhline(y=0.5, color='r', linestyle='-')
plt.show()

- 24,552
- 19
- 101
- 135

- 10,543
- 1
- 14
- 23
If you want to draw a horizontal line in the axes, you might also try ax.hlines()
method. You need to specify y
position and xmin
and xmax
in the data coordinate (i.e, your actual data range in the x-axis). A sample code snippet is:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(1, 21, 200)
y = np.exp(-x)
fig, ax = plt.subplots()
ax.plot(x, y)
ax.hlines(y=0.2, xmin=4, xmax=20, linewidth=2, color='r')
plt.show()
The snippet above will plot a horizontal line in the axes at y=0.2
. The horizontal line starts at x=4
and ends at x=20
. The generated image is:

- 56,955
- 33
- 144
- 158

- 24,001
- 18
- 134
- 273
Use matplotlib.pyplot.hlines
:
- These methods are applicable to plots generated with
seaborn
andpandas.DataFrame.plot
, which both usematplotlib
. - Plot multiple horizontal lines by passing a
list
to they
parameter. y
can be passed as a single location:y=40
y
can be passed as multiple locations:y=[39, 40, 41]
- Also
matplotlib.axes.Axes.hlines
for the object oriented api.- If you're a plotting a figure with something like
fig, ax = plt.subplots()
, then replaceplt.hlines
orplt.axhline
withax.hlines
orax.axhline
, respectively.
- If you're a plotting a figure with something like
matplotlib.pyplot.axhline
&matplotlib.axes.Axes.axhline
can only plot a single location (e.g.y=40
)- See this answer for vertical lines with
.vlines
plt.plot
import numpy as np
import matplotlib.pyplot as plt
xs = np.linspace(1, 21, 200)
plt.figure(figsize=(6, 3))
plt.hlines(y=39.5, xmin=100, xmax=175, colors='aqua', linestyles='-', lw=2, label='Single Short Line')
plt.hlines(y=[39, 40, 41], xmin=[0, 25, 50], xmax=[len(xs)], colors='purple', linestyles='--', lw=2, label='Multiple Lines')
plt.legend(bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0)
ax.plot
import numpy as np
import matplotlib.pyplot as plt
xs = np.linspace(1, 21, 200)
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6))
ax1.hlines(y=40, xmin=0, xmax=len(xs), colors='r', linestyles='--', lw=2)
ax1.set_title('One Line')
ax2.hlines(y=[39, 40, 41], xmin=0, xmax=len(xs), colors='purple', linestyles='--', lw=2)
ax2.set_title('Multiple Lines')
plt.tight_layout()
plt.show()
Seaborn axis-level plot
import seaborn as sns
# sample data
fmri = sns.load_dataset("fmri")
# max y values for stim and cue
c_max, s_max = fmri.pivot_table(index='timepoint', columns='event', values='signal', aggfunc='mean').max()
# plot
g = sns.lineplot(data=fmri, x="timepoint", y="signal", hue="event")
# x min and max
xmin, ymax = g.get_xlim()
# vertical lines
g.hlines(y=[c_max, s_max], xmin=xmin, xmax=xmax, colors=['tab:orange', 'tab:blue'], ls='--', lw=2)
Seaborn figure-level plot
- Each axes must be iterated through
import seaborn as sns
# sample data
fmri = sns.load_dataset("fmri")
# used to get the max values (y) for each event in each region
fpt = fmri.pivot_table(index=['region', 'timepoint'], columns='event', values='signal', aggfunc='mean')
# plot
g = sns.relplot(data=fmri, x="timepoint", y="signal", col="region",hue="event", style="event", kind="line")
# iterate through the axes
for ax in g.axes.flat:
# get x min and max
xmin, xmax = ax.get_xlim()
# extract the region from the title for use in selecting the index of fpt
region = ax.get_title().split(' = ')[1]
# get x values for max event
c_max, s_max = fpt.loc[region].max()
# add horizontal lines
ax.hlines(y=[c_max, s_max], xmin=xmin, xmax=xmax, colors=['tab:orange', 'tab:blue'], ls='--', lw=2, alpha=0.5)
Time Series Axis
xmin
andxmax
will accept a date like'2020-09-10'
ordatetime(2020, 9, 10)
- Using
from datetime import datetime
xmin=datetime(2020, 9, 10), xmax=datetime(2020, 9, 10) + timedelta(days=3)
- Given
date = df.index[9]
,xmin=date, xmax=date + pd.Timedelta(days=3)
, where the index is aDatetimeIndex
.
- Using
- The date column on the axis must be a
datetime dtype
. If using pandas, then usepd.to_datetime
. For an array or list, refer to Converting numpy array of strings to datetime or Convert datetime list into date python, respectively.
import pandas_datareader as web # conda or pip install this; not part of pandas
import pandas as pd
import matplotlib.pyplot as plt
# get test data; the Date index is already downloaded as datetime dtype
df = web.DataReader('^gspc', data_source='yahoo', start='2020-09-01', end='2020-09-28').iloc[:, :2]
# display(df.head(2))
High Low
Date
2020-09-01 3528.030029 3494.600098
2020-09-02 3588.110107 3535.229980
# plot dataframe
ax = df.plot(figsize=(9, 6), title='S&P 500', ylabel='Price')
# add horizontal line
ax.hlines(y=3450, xmin='2020-09-10', xmax='2020-09-17', color='purple', label='test')
ax.legend()
plt.show()
- Sample time series data if
web.DataReader
doesn't work.
data = {pd.Timestamp('2020-09-01 00:00:00'): {'High': 3528.03, 'Low': 3494.6}, pd.Timestamp('2020-09-02 00:00:00'): {'High': 3588.11, 'Low': 3535.23}, pd.Timestamp('2020-09-03 00:00:00'): {'High': 3564.85, 'Low': 3427.41}, pd.Timestamp('2020-09-04 00:00:00'): {'High': 3479.15, 'Low': 3349.63}, pd.Timestamp('2020-09-08 00:00:00'): {'High': 3379.97, 'Low': 3329.27}, pd.Timestamp('2020-09-09 00:00:00'): {'High': 3424.77, 'Low': 3366.84}, pd.Timestamp('2020-09-10 00:00:00'): {'High': 3425.55, 'Low': 3329.25}, pd.Timestamp('2020-09-11 00:00:00'): {'High': 3368.95, 'Low': 3310.47}, pd.Timestamp('2020-09-14 00:00:00'): {'High': 3402.93, 'Low': 3363.56}, pd.Timestamp('2020-09-15 00:00:00'): {'High': 3419.48, 'Low': 3389.25}, pd.Timestamp('2020-09-16 00:00:00'): {'High': 3428.92, 'Low': 3384.45}, pd.Timestamp('2020-09-17 00:00:00'): {'High': 3375.17, 'Low': 3328.82}, pd.Timestamp('2020-09-18 00:00:00'): {'High': 3362.27, 'Low': 3292.4}, pd.Timestamp('2020-09-21 00:00:00'): {'High': 3285.57, 'Low': 3229.1}, pd.Timestamp('2020-09-22 00:00:00'): {'High': 3320.31, 'Low': 3270.95}, pd.Timestamp('2020-09-23 00:00:00'): {'High': 3323.35, 'Low': 3232.57}, pd.Timestamp('2020-09-24 00:00:00'): {'High': 3278.7, 'Low': 3209.45}, pd.Timestamp('2020-09-25 00:00:00'): {'High': 3306.88, 'Low': 3228.44}, pd.Timestamp('2020-09-28 00:00:00'): {'High': 3360.74, 'Low': 3332.91}}
df = pd.DataFrame.from_dict(data, 'index')
Barplot and Histograms
- Note that bar plot tick locations have a zero-based index, regardless of the axis tick labels, so select
xmin
andxmax
based on the bar index, not the tick label.ax.get_xticklabels()
will show the locations and labels.
import pandas as pd
import seaborn as sns # for tips data
# load data
tips = sns.load_dataset('tips')
# histogram
ax = tips.plot(kind='hist', y='total_bill', bins=30, ec='k', title='Histogram with Horizontal Line')
_ = ax.hlines(y=6, xmin=0, xmax=55, colors='r')
# barplot
ax = tips.loc[5:25, ['total_bill', 'tip']].plot(kind='bar', figsize=(15, 4), title='Barplot with Vertical Lines', rot=0)
_ = ax.hlines(y=6, xmin=3, xmax=15, colors='r')

- 56,955
- 33
- 144
- 158
In addition to the most upvoted answer here, one can also chain axhline
after calling plot
on a pandas
's DataFrame
.
import pandas as pd
(pd.DataFrame([1, 2, 3])
.plot(kind='bar', color='orange')
.axhline(y=1.5));

- 2,803
- 2
- 25
- 35
You are correct, I think the [0,len(xs)]
is throwing you off. You'll want to reuse the original x-axis variable xs
and plot that with another numpy array of the same length that has your variable in it.
annual = np.arange(1,21,1)
l = np.array(value_list) # a list with 20 values
spl = UnivariateSpline(annual,l)
xs = np.linspace(1,21,200)
plt.plot(xs,spl(xs),'b')
#####horizontal line
horiz_line_data = np.array([40 for i in xrange(len(xs))])
plt.plot(xs, horiz_line_data, 'r--')
###########plt.plot([0,len(xs)],[40,40],'r--',lw=2)
pylab.ylim([0,200])
plt.show()
Hopefully that fixes the problem!

- 499
- 4
- 6
-
32This works, but it's not particularly efficient, especially as you're creating a potentially very large array depending on the data. If you're going to do it this way, it would be smarter to have two data points, one at the beginning and one at the end. Still, matplotlib already has a dedicated function for horizontal lines. – BlivetWidget Oct 28 '15 at 04:17
A nice and easy way for those people who always forget the command axhline
is the following
plt.plot(x, [y]*len(x))
In your case xs = x
and y = 40
.
If len(x) is large, then this becomes inefficient and you should really use axhline
.

- 1,414
- 12
- 23
You can use plt.grid
to draw a horizontal line.
import numpy as np
from matplotlib import pyplot as plt
from scipy.interpolate import UnivariateSpline
from matplotlib.ticker import LinearLocator
# your data here
annual = np.arange(1,21,1)
l = np.random.random(20)
spl = UnivariateSpline(annual,l)
xs = np.linspace(1,21,200)
# plot your data
plt.plot(xs,spl(xs),'b')
# horizental line?
ax = plt.axes()
# three ticks:
ax.yaxis.set_major_locator(LinearLocator(3))
# plot grids only on y axis on major locations
plt.grid(True, which='major', axis='y')
# show
plt.show()

- 4,202
- 5
- 20
- 36