Use a dedicated ELF section to "collect" the data structures.
For example, define your data structure in info.h as
#ifndef INFO_H
#define INFO_H
#ifndef INFO_ALIGNMENT
#if defined(__LP64__)
#define INFO_ALIGNMENT 16
#else
#define INFO_ALIGNMENT 8
#endif
#endif
struct info {
long key;
long val;
} __attribute__((__aligned__(INFO_ALIGNMENT)));
#define INFO_NAME(counter) INFO_CAT(info_, counter)
#define INFO_CAT(a, b) INFO_DUMMY() a ## b
#define INFO_DUMMY()
#define DEFINE_INFO(data...) \
static struct info INFO_NAME(__COUNTER__) \
__attribute__((__used__, __section__("info"))) \
= { data }
#endif /* INFO_H */
The INFO_ALIGNMENT
macro is the alignment used by the linker to place each symbol, separately, to the info
section. It is important that the C compiler agrees, as otherwise the section contents cannot be treated as an array. (You'll obtain an incorrect number of structures, and only the first one (plus every N'th) will be correct, the rest of the structures garbled. Essentially, the C compiler and the linker disagreed on the size of each structure in the section "array".)
Note that you can add preprocessor macros to fine-tune the INFO_ALIGNMENT
for each of the architectures you use, but you can also override it for example in your Makefile, at compile time. (For GCC, supply -DINFO_ALIGNMENT=32
for example.)
The used
attribute ensures that the definition is emitted in the object file, even though it is not referenced otherwise in the same data file. The section("info")
attribute puts the data into a special info
section in the object file. The section name (info
) is up to you.
Those are the critical parts, otherwise it is completely up to you how you define the macro, or whether you define it at all. Using the macro is easy, because one does not need to worry about using unique variable name for the structure. Also, if at least one member is specified, all others will be initialized to zero.
In the source files, you define the data objects as e.g.
#include "info.h"
/* Suggested, easy way */
DEFINE_INFO(.key = 5, .val = 42);
/* Alternative way, without relying on any macros */
static struct info foo __attribute__((__used__, __section__("info"))) = {
.key = 2,
.val = 1
};
The linker provides symbols __start_info
and __stop_info
, to obtain the structures in the info
section. In your main.c, use for example
#include "info.h"
extern struct info __start_info[];
extern struct info __stop_info[];
#define NUM_INFO ((size_t)(__stop_info - __start_info))
#define INFO(i) ((__start_info) + (i))
so you can enumerate all info structures. For example,
int main(void)
{
size_t i;
printf("There are %zu info structures:\n", NUM_INFO);
for (i = 0; i < NUM_INFO; i++)
printf(" %zu. key=%ld, val=%ld\n", i,
__start_info[i].key, INFO(i)->val);
return EXIT_SUCCESS;
}
For illustration, I used both the __start_info[]
array access (you can obviously #define SOMENAME __start_info
if you want, just make sure you do not use SOMENAME
elsewhere in main.c, so you can use SOMENAME[]
as the array instead), as well as the INFO()
macro.
Let's look at a practical example, an RPN calculator.
We use section ops
to define the operations, using facilities defined in ops.h:
#ifndef OPS_H
#define OPS_H
#include <stdlib.h>
#include <errno.h>
#ifndef ALIGN_SECTION
#if defined(__LP64__) || defined(_LP64)
#define ALIGN_SECTION __attribute__((__aligned__(16)))
#elif defined(__ILP32__) || defined(_ILP32)
#define ALIGN_SECTION __attribute__((__aligned__(8)))
#else
#define ALIGN_SECTION
#endif
#endif
typedef struct {
size_t maxsize; /* Number of values allocated for */
size_t size; /* Number of values in stack */
double *value; /* Values, oldest first */
} stack;
#define STACK_INITIALIZER { 0, 0, NULL }
struct op {
const char *name; /* Operation name */
const char *desc; /* Description */
int (*func)(stack *); /* Implementation */
} ALIGN_SECTION;
#define OPS_NAME(counter) OPS_CAT(op_, counter, _struct)
#define OPS_CAT(a, b, c) OPS_DUMMY() a ## b ## c
#define OPS_DUMMY()
#define DEFINE_OP(name, func, desc) \
static struct op OPS_NAME(__COUNTER__) \
__attribute__((__used__, __section__("ops"))) = { name, desc, func }
static inline int stack_has(stack *st, const size_t num)
{
if (!st)
return EINVAL;
if (st->size < num)
return ENOENT;
return 0;
}
static inline int stack_pop(stack *st, double *to)
{
if (!st)
return EINVAL;
if (st->size < 1)
return ENOENT;
st->size--;
if (to)
*to = st->value[st->size];
return 0;
}
static inline int stack_push(stack *st, double val)
{
if (!st)
return EINVAL;
if (st->size >= st->maxsize) {
const size_t maxsize = (st->size | 127) + 129;
double *value;
value = realloc(st->value, maxsize * sizeof (double));
if (!value)
return ENOMEM;
st->maxsize = maxsize;
st->value = value;
}
st->value[st->size++] = val;
return 0;
}
#endif /* OPS_H */
The basic set of operations is defined in ops-basic.c:
#include "ops.h"
static int do_neg(stack *st)
{
double temp;
int retval;
retval = stack_pop(st, &temp);
if (retval)
return retval;
return stack_push(st, -temp);
}
static int do_add(stack *st)
{
int retval;
retval = stack_has(st, 2);
if (retval)
return retval;
st->value[st->size - 2] = st->value[st->size - 1] + st->value[st->size - 2];
st->size--;
return 0;
}
static int do_sub(stack *st)
{
int retval;
retval = stack_has(st, 2);
if (retval)
return retval;
st->value[st->size - 2] = st->value[st->size - 1] - st->value[st->size - 2];
st->size--;
return 0;
}
static int do_mul(stack *st)
{
int retval;
retval = stack_has(st, 2);
if (retval)
return retval;
st->value[st->size - 2] = st->value[st->size - 1] * st->value[st->size - 2];
st->size--;
return 0;
}
static int do_div(stack *st)
{
int retval;
retval = stack_has(st, 2);
if (retval)
return retval;
st->value[st->size - 2] = st->value[st->size - 1] / st->value[st->size - 2];
st->size--;
return 0;
}
DEFINE_OP("neg", do_neg, "Negate current operand");
DEFINE_OP("add", do_add, "Add current and previous operands");
DEFINE_OP("sub", do_sub, "Subtract previous operand from current one");
DEFINE_OP("mul", do_mul, "Multiply previous and current operands");
DEFINE_OP("div", do_div, "Divide current operand by the previous operand");
The calculator expects each value and operand to be a separate command-line argument for simplicity. Our main.c contains operation lookup, basic usage, value parsing, and printing the result (or error):
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include "ops.h"
extern struct op __start_ops[];
extern struct op __stop_ops[];
#define NUM_OPS ((size_t)(__stop_ops - __start_ops))
static int do_op(stack *st, const char *opname)
{
struct op *curr_op;
if (!st || !opname)
return EINVAL;
for (curr_op = __start_ops; curr_op < __stop_ops; curr_op++)
if (!strcmp(opname, curr_op->name))
break;
if (curr_op >= __stop_ops)
return ENOTSUP;
return curr_op->func(st);
}
static int usage(const char *argv0)
{
struct op *curr_op;
fprintf(stderr, "\n");
fprintf(stderr, "Usage: %s [ -h | --help ]\n", argv0);
fprintf(stderr, " %s RPN-EXPRESSION\n", argv0);
fprintf(stderr, "\n");
fprintf(stderr, "Where RPN-EXPRESSION is an expression using reverse\n");
fprintf(stderr, "Polish notation, and each argument is a separate value\n");
fprintf(stderr, "or operator. The following operators are supported:\n");
for (curr_op = __start_ops; curr_op < __stop_ops; curr_op++)
fprintf(stderr, "\t%-14s %s\n", curr_op->name, curr_op->desc);
fprintf(stderr, "\n");
return EXIT_SUCCESS;
}
int main(int argc, char *argv[])
{
stack all = STACK_INITIALIZER;
double val;
size_t i;
int arg, err;
char dummy;
if (argc < 2 || !strcmp(argv[1], "-h") || !strcmp(argv[1], "--help"))
return usage(argv[0]);
for (arg = 1; arg < argc; arg++)
if (sscanf(argv[arg], " %lf %c", &val, &dummy) == 1) {
err = stack_push(&all, val);
if (err) {
fprintf(stderr, "Cannot push %s to stack: %s.\n", argv[arg], strerror(err));
return EXIT_FAILURE;
}
} else {
err = do_op(&all, argv[arg]);
if (err == ENOTSUP) {
fprintf(stderr, "%s: Operation not supported.\n", argv[arg]);
return EXIT_FAILURE;
} else
if (err) {
fprintf(stderr, "%s: Cannot perform operation: %s.\n", argv[arg], strerror(err));
return EXIT_FAILURE;
}
}
if (all.size < 1) {
fprintf(stderr, "No result.\n");
return EXIT_FAILURE;
} else
if (all.size > 1) {
fprintf(stderr, "Multiple results:\n");
for (i = 0; i < all.size; i++)
fprintf(stderr, " %.9f\n", all.value[i]);
return EXIT_FAILURE;
}
printf("%.9f\n", all.value[0]);
return EXIT_SUCCESS;
}
Note that if there were many operations, constructing a hash table to speed up the operation lookup would make a lot of sense.
Finally, we need a Makefile to tie it all together:
CC := gcc
CFLAGS := -Wall -O2 -std=c99
LDFLAGS := -lm
OPS := $(wildcard ops-*.c)
OPSOBJS := $(OPS:%.c=%.o)
PROGS := rpncalc
.PHONY: all clean
all: clean $(PROGS)
clean:
rm -f *.o $(PROGS)
%.o: %.c
$(CC) $(CFLAGS) -c $^
rpncalc: main.o $(OPSOBJS)
$(CC) $(CFLAGS) $^ $(LDFLAGS) -o $@
Because this forum does not preserve Tabs, and make requires them for indentation, you probably need to fix the indentation after copy-pasting the above. I use sed -e 's|^ *|\t|' -i Makefile
If you compile (make clean all
) and run (./rpncalc
) the above, you'll see the usage information:
Usage: ./rpncalc [ -h | --help ]
./rpncalc RPN-EXPRESSION
Where RPN-EXPRESSION is an expression using reverse
Polish notation, and each argument is a separate value
or operator. The following operators are supported:
div Divide current operand by the previous operand
mul Multiply previous and current operands
sub Subtract previous operand from current one
add Add current and previous operands
neg Negate current operand
and if you run e.g. ./rpncalc 3.0 4.0 5.0 sub mul neg
, you get the result 3.000000000
.
Now, let's add some new operations, ops-sqrt.c:
#include <math.h>
#include "ops.h"
static int do_sqrt(stack *st)
{
double temp;
int retval;
retval = stack_pop(st, &temp);
if (retval)
return retval;
return stack_push(st, sqrt(temp));
}
DEFINE_OP("sqrt", do_sqrt, "Take the square root of the current operand");
Because the Makefile above compiles all C source files beginning with ops-
in to the final binary, the only thing you need to do is recompile the source: make clean all
. Running ./rpncalc
now outputs
Usage: ./rpncalc [ -h | --help ]
./rpncalc RPN-EXPRESSION
Where RPN-EXPRESSION is an expression using reverse
Polish notation, and each argument is a separate value
or operator. The following operators are supported:
sqrt Take the square root of the current operand
div Divide current operand by the previous operand
mul Multiply previous and current operands
sub Subtract previous operand from current one
add Add current and previous operands
neg Negate current operand
and you have the new sqrt
operator available.
Testing e.g. ./rpncalc 1 1 1 1 add add add sqrt
yields 2.000000000
, as expected.