I read my university class theoretically the order of growth of functions and tried implementing it practically at home. Although the order of growth turned out to be exact the same as in textbooks but their executing time changes with every single time I execute the program. Why is that?
Source Code
import time
import math
from tabulate import tabulate
n=eval(input("Enter the value of n: "));
t1=time.time()
a=12
t2=time.time()
A=t2-t1
t3=time.time()
b=n
t4=time.time()
B=t4-t3
t5=time.time()
c=math.log10(n);
t6=time.time()
C=t6-t5
t7=time.time()
d=n*math.log10(n);
t8=time.time()
D=t8-t7
t9=time.time()
e=n**2
t10=time.time()
E=t10-t9
t11=time.time()
f=2**n
t12=time.time()
F=t12-t11
print(tabulate([['constant',a,A], ['n',b,B], ['logn',c,C], ['nlogn',d,D], ['n**2',e,E], ['2**n',f,F]], headers=['Function', 'Value', 'Time']))
templist= [A,B,C,D,E,F]
print("The time order in acsending order is: ", sorted(templist,key=int))
First Execution
naufil@naufil-Inspiron-7559:~/Desktop/python$ python3 time_order.py
Enter the value of n: 100
Function Value Time
---------- --------------- -----------
constant 12 2.14577e-06
n 100 1.43051e-06
logn 2 4.1008e-05
nlogn 200 3.57628e-06
n**2 10000 3.33786e-06
2**n 1.26765e+30 3.8147e-06
The time order in acsending order is: [2.1457672119140625e-06, 1.430511474609375e-06, 4.100799560546875e-05, 3.5762786865234375e-06, 3.337860107421875e-06, 3.814697265625e-06]
Second Execution
naufil@naufil-Inspiron-7559:~/Desktop/python$ python3 time_order.py
Enter the value of n: 100
Function Value Time
---------- --------------- -----------
constant 12 2.14577e-06
n 100 1.19209e-06
logn 2 4.64916e-05
nlogn 200 4.05312e-06
n**2 10000 3.33786e-06
2**n 1.26765e+30 3.57628e-06
The time order in acsending order is: [2.1457672119140625e-06, 1.1920928955078125e-06, 4.649162292480469e-05, 4.0531158447265625e-06, 3.337860107421875e-06, 3.5762786865234375e-06]