I'm trying to make client program that communicates with a server using a TcpStream
wrapped by a openssl::ssl::SslStream
(from crates.io). It should wait for read
, and process data sent from the server if it was received without delay. At the same time, it should be able to send messages to the server regardless of reading.
I tried some methods such as
- Passing single stream to both read and write threads. Both
read
andwrite
methods require a mutable reference, so I couldn't pass a single stream to two threads. - I followed In Rust how do I handle parallel read writes on a TcpStream, but
TcpStream
doesn't seem to haveclone
method, and neither doesSslStream
. - I tried making copy of
TcpStream
withas_raw_fd
andfrom_raw_fd
:
fn irc_read(mut stream: SslStream<TcpStream>) {
loop {
let mut buf = vec![0; 2048];
let resp = stream.ssl_read(&mut buf);
match resp {
// Process Message
}
}
}
fn irc_write(mut stream: SslStream<TcpStream>) {
thread::sleep(Duration::new(3, 0));
let msg = "QUIT\n";
let res = stream.ssl_write(msg.as_bytes());
let _ = stream.flush();
match res {
// Process
}
}
fn main() {
let ctx = SslContext::new(SslMethod::Sslv23).unwrap();
let read_ssl = Ssl::new(&ctx).unwrap();
let write_ssl = Ssl::new(&ctx).unwrap();
let raw_stream = TcpStream::connect((SERVER, PORT)).unwrap();
let mut fd_stream: TcpStream;
unsafe {
fd_stream = TcpStream::from_raw_fd(raw_stream.as_raw_fd());
}
let mut read_stream = SslStream::connect(read_ssl, raw_stream).unwrap();
let mut write_stream = SslStream::connect(write_ssl, fd_stream).unwrap();
let read_thread = thread::spawn(move || {
irc_read(read_stream);
});
let write_thread = thread::spawn(move || {
irc_write(write_stream);
});
let _ = read_thread.join();
let _ = write_thread.join();
}
this code compiles, but panics on the second SslStream::connect
thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value: Failure(Ssl(ErrorStack([Error { library: "SSL routines", function: "SSL23_GET_SERVER_HELLO", reason: "unknown protocol" }])))', ../src/libcore/result.rs:788
stack backtrace:
1: 0x556d719c6069 - std::sys::backtrace::tracing::imp::write::h00e948915d1e4c72
2: 0x556d719c9d3c - std::panicking::default_hook::_{{closure}}::h7b8a142818383fb8
3: 0x556d719c8f89 - std::panicking::default_hook::h41cf296f654245d7
4: 0x556d719c9678 - std::panicking::rust_panic_with_hook::h4cbd7ca63ce1aee9
5: 0x556d719c94d2 - std::panicking::begin_panic::h93672d0313d5e8e9
6: 0x556d719c9440 - std::panicking::begin_panic_fmt::hd0daa02942245d81
7: 0x556d719c93c1 - rust_begin_unwind
8: 0x556d719ffcbf - core::panicking::panic_fmt::hbfc935564d134c1b
9: 0x556d71899f02 - core::result::unwrap_failed::h66f79b2edc69ddfd
at /buildslave/rust-buildbot/slave/stable-dist-rustc-linux/build/obj/../src/libcore/result.rs:29
10: 0x556d718952cb - _<core..result..Result<T, E>>::unwrap::h49a140af593bc4fa
at /buildslave/rust-buildbot/slave/stable-dist-rustc-linux/build/obj/../src/libcore/result.rs:726
11: 0x556d718a5e3d - dbrust::main::h24a50e631826915e
at /home/lastone817/dbrust/src/main.rs:87
12: 0x556d719d1826 - __rust_maybe_catch_panic
13: 0x556d719c8702 - std::rt::lang_start::h53bf99b0829cc03c
14: 0x556d718a6b83 - main
15: 0x7f40a0b5082f - __libc_start_main
16: 0x556d7188d038 - _start
17: 0x0 - <unknown>
error: Process didn't exit successfully: `target/debug/dbrust` (exit code: 101)
The best solution I've found so far is to use nonblocking. I used Mutex
on the stream and passed it to both threads. Then the reading thread acquires a lock and calls read
. If there is no message it releases the lock so that the writing thread can use the stream. With this method, the reading thread does busy waiting, resulting in 100% CPU consumption. This is not the best solution, I think.
Is there a safe way to separate the read and write aspects of the stream?