I need a good algorithm for calculating the point that is closest to a collection of lines in python, preferably by using least squares. I found this post on a python implementation that doesn't work:
Finding the centre of multiple lines using least squares approach in Python
And I found this resource in Matlab that everyone seems to like... but I'm not sure how to convert it to python:
https://www.mathworks.com/matlabcentral/fileexchange/37192-intersection-point-of-lines-in-3d-space
I find it hard to believe that someone hasn't already done this... surely this is part of numpy or a standard package, right? I'm probably just not searching for the right terms - but I haven't been able to find it yet. I'd be fine with defining lines by two points each or by a point and a direction. Any help would be greatly appreciated!
Here's an example set of points that I'm working with:
initial XYZ points for the first set of lines
array([[-7.07107037, 7.07106748, 1. ],
[-7.34818339, 6.78264559, 1. ],
[-7.61352972, 6.48335745, 1. ],
[-7.8667115 , 6.17372055, 1. ],
[-8.1072994 , 5.85420065, 1. ]])
the angles that belong to the first set of lines
[-44.504854, -42.029223, -41.278573, -37.145774, -34.097022]
initial XYZ points for the second set of lines
array([[ 0., -20. , 1. ],
[ 7.99789129e-01, -19.9839984, 1. ],
[ 1.59830153e+00, -19.9360366, 1. ],
[ 2.39423914e+00, -19.8561769, 1. ],
[ 3.18637019e+00, -19.7445510, 1. ]])
the angles that belong to the second set of lines
[89.13244, 92.39087, 94.86425, 98.91849, 99.83488]
The solution should be the origin or very near it (the data is just a little noisy, which is why the lines don't perfectly intersect at a single point).