I'm wondering about the way that python's Multiprocessing.Pool class works with map, imap, and map_async. My particular problem is that I want to map on an iterator that creates memory-heavy objects, and don't want all these objects to be generated into memory at the same time. I wanted to see if the various map() functions would wring my iterator dry, or intelligently call the next() function only as child processes slowly advanced, so I hacked up some tests as such:
def g():
for el in xrange(100):
print el
yield el
def f(x):
time.sleep(1)
return x*x
if __name__ == '__main__':
pool = Pool(processes=4) # start 4 worker processes
go = g()
g2 = pool.imap(f, go)
g2.next()
And so on with map, imap, and map_async. This is the most flagrant example however, as simply calling next() a single time on g2 prints out all my elements from my generator g(), whereas if imap were doing this 'lazily' I would expect it to only call go.next() once, and therefore print out only '1'.
Can someone clear up what is happening, and if there is some way to have the process pool 'lazily' evaluate the iterator as needed?
Thanks,
Gabe