What you really want to do, is handle each digit in order of increasing importance. To make that easier, you should implement the following functions:
/* Return the number of fractional bits in bs */
int bs_fractbits(const char *bs);
/* Return the number of integer bits in bs */
int bs_intbits(const char *bs);
/* Return the bit in bs corresponding to value 2**i,
0 if outside the bit string */
int bs_bit(const char *bs, int i);
/* Return -1 if bs is negative,
0 if bs is zero or NULL,
+1 if bs is positive */
int bs_sign(const char *bs);
/* Return -1 if bs1 < bs2,
0 if bs1 == bs2,
+1 if bs1 > bs2. */
int bs_cmp(const char *bs1, const char *bs2);
To support negative values, you'll need to implement both addition and subtraction (of "unsigned" bit strings):
Addition: The result has as many fractional bits as the term that has most fractional bits, and possibly one more integer bit than the term that has most integer bits. Start at the least significant bit in either term, and work your way up to the most significant bit in either term, summing each bit, and keeping the "carry bit" along, just like you'd do by hand. If the carry is nonzero at end, you'll get that one additional bit.
Subtraction: Always subtract smaller from larger. If that changes the order of the terms, negate the result. The result has at most as many fractional bits as the term that has most fractional bits, and at most as many integer bits as the term that has most integer bits. This is just like addition, except you subtract the bits, and instead of "carry bit", you use a "borrow bit". Because you subtract smaller unsigned value from larger unsigned value, the "borrow bit" will be zero at end.
Multiplication: The integer part has the number of integer bits, and the number of fractional bits, as the terms have in total (summed). You can implement the operation as if multiplying two unsigned integer values, and just insert the bit at end. (So that the result has as many fractional bits as the input terms have in total.) This usually involves a double loop, just like in long multiplication by hand.
Note that the same logic also works if you use larger radix instead of 2. The "carry"/"borrow" is a digit, between zero and one less than the radix.
Personally, I'd be very tempted to use a structure to describe each digit string:
typedef struct {
int idigits; /* Number of integral digits before point */
int fdigits; /* Number of fractional digits after point */
int size; /* Number of chars dynamically allocated at data */
char *point; /* Location of decimal point */
char *data; /* Dynamically allocated buffer */
} digitstring;
#define DIGITSTRING_INIT { 0, 0, 0, NULL, NULL }
with an additional flag if negative digit strings are to be supported.
Digit D with numerical value D×Bi, where B is the radix (number of unique digits used) and i being the position of said digit, is located at point[-i]
if i < 0
(and -i <= fdigits
), or at point[-i-1]
if i >= 0
(and i < idigits
). point[0]
itself is where the decimal point is, if there is one.
For example, if we have string 0100.00
, then idigits = 4
, fdigits = 2
, and the only nonzero digit is at position 2
. (Position 0 is on the left side of the decimal point, and -1 on the right side.)
size
and data
fields allow reuse of the dynamically allocated buffer. Each declaration of a digitstring must be initialized, digitstring value = DIGITSTRING_INIT;
, because there is no initialization function; this way you are less likely to leak memory (unless you forget to free a digitstring when no longer needed):
/* Free the specified digit string. */
static inline void digitstring_free(digitstring *ds)
{
if (ds) {
if (ds->data)
free(ds->data);
ds->idigits = 0;
ds->fdigits = 0;
ds->size = 0;
ds->point = NULL;
ds->data = NULL;
}
}
To use the digit string as a C string, you use a helper function to obtain the pointer to the most significant digit in the digit string:
/* Return a pointer to a printable version of the digit string. */
static const char *digitstring_str(const digitstring *ds, const char *none)
{
if (ds && ds->point)
return (const char *)(ds->point - ds->idigits);
else
return none;
}
I've found that rather than crash, it is often useful to pass an extra parameter that is only used for the return value when the return value is otherwise undefined. For example, if you have an initialized digit string foo
without any contents, then digitstring_str(&foo, "0")
returns the string literal "0"
.
The main point of the digit string structure is to have accessor functions that get and set each individual digit:
/* Get the value of a specific digit. */
static inline unsigned int digitstring_get(const digitstring *ds, const int position)
{
if (ds) {
if (position < 0) {
if (-position <= ds->fdigits)
return digit_to_value(ds->point[-position]);
else
return 0;
} else {
if (position < ds->idigits)
return digit_to_value(ds->point[-position-1]);
else
return 0;
}
} else
return 0;
}
/* Set the value of a specific digit. */
static inline void digitstring_set(digitstring *ds, const int position, const unsigned int value)
{
if (!ds) {
fprintf(stderr, "digitstring_set(): NULL digitstring specified.\n");
exit(EXIT_FAILURE);
} else
if (position < 0) {
if (-position > ds->fdigits) {
fprintf(stderr, "digitstring_set(): Digit position underflow (in fractional part).\n");
exit(EXIT_FAILURE);
}
ds->point[-position] = value_to_digit(value);
} else {
if (position >= ds->idigits) {
fprintf(stderr, "digitstring_set(): Digit position overflow (in integer part).\n");
exit(EXIT_FAILURE);
}
ds->point[-position-1] = value_to_digit(value);
}
}
Above, value_to_digit()
is a helper function that converts a numerical value to the corresponding character, and digit_to_value()
converts a character to the corresponding numerical value.
All operations (from parsing to arithmetic operators) really need a "constructor", that creates a new digit string with sufficient number of digits. (The number of digits is known beforehand for each operation, and depends only on the number of significant digits in the terms.) For this, I created a function that constructs a zero of desired size:
/* Clear the specified digit string to zero. */
static inline void digitstring_zero(digitstring *ds, int idigits, int fdigits)
{
int size;
char *data;
if (!ds) {
fprintf(stderr, "digitstring_zero(): No digitstring specified.\n");
exit(EXIT_FAILURE);
}
/* Require at least one integral digit. */
if (idigits < 1)
idigits = 1;
if (fdigits < 0)
fdigits = 0;
/* Total number of chars needed, including decimal point
and string-terminating nul char. */
size = idigits + 1 + fdigits + 1;
/* Check if dynamically allocated buffer needs resizing. */
if (ds->size < size) {
if (ds->data)
data = realloc(ds->data, size);
else
data = malloc(size);
if (!data) {
fprintf(stderr, "digitstring_zero(): Out of memory.\n");
exit(EXIT_FAILURE);
}
ds->data = data;
ds->size = size;
} else {
data = ds->data;
size = ds->size;
}
/* Fill it with zeroes. */
memset(data, value_to_digit(0), idigits + 1 + fdigits);
/* Pad the unused space with nul chars, terminating the string. */
memset(data + idigits + 1 + fdigits, '\0', size - idigits - 1 - fdigits);
/* Assign the decimal point. */
ds->point = data + idigits;
/* If there are no decimals, no need for a decimal point either. */
if (fdigits > 0)
ds->point[0] = decimal_point;
else
ds->point[0] = '\0';
/* After setting the desired digits, use digitstring_trim(). */
ds->idigits = idigits;
ds->fdigits = fdigits;
}
It will ensure the digit string has enough room for the specified number of digits, reallocating its dynamically allocated buffer if necessary, reusing it if already large enough.
The idea is that to implement an operation, you first find out the maximum number of integral and fractional digits the result can have. You use the above to create the result digit string, then digitstring_set()
to set each digit to their respective values. You will typically operate in increasing digit significance, which means increasing digit "positions".
If we have additional helper functions int digits(const char *src)
, which returns the number of consecutive valid digit characters starting at src
, and int decimal_points(const char *src)
, which returns 1 if src
points to a decimal point, and 0 otherwise, we can parse input strings into digit strings using
/* Parse a string into a digit string, returning the pointer
to the first unparsed character, or NULL if an error occurs. */
static const char *digitstring_parse(digitstring *ds, const char *src)
{
const int zero = value_to_digit(0);
const char *idigit, *fdigit;
int idigits, fdigits, fextra, n;
/* Fail if nothing to parse. */
if (!src)
return NULL;
/* Skip leading whitespace. */
while (isspace((unsigned char)(*src)))
src++;
/* Fail if nothing to parse. */
if (*src == '\0')
return NULL;
/* Scan integer digits. */
idigit = src;
src += digits(src);
idigits = (int)(src - idigit);
/* Decimal point? */
fextra = 0;
n = decimal_points(src);
if (n > 0) {
src += n;
/* Scan fractional digits. */
fdigit = src;
src += digits(src);
fdigits = (int)(src - fdigit);
if (fdigits < 1)
fextra = 1;
} else {
fdigit = src;
fdigits = 0;
}
/* No digits? */
if (idigit == 0 && fdigit == 0)
return NULL;
/* Trim leading zeroes. */
while (idigits > 1 && *idigit == zero) {
idigits--;
idigit++;
}
/* Trim trailing zeroes. */
while (fdigits > 1 && fdigit[fdigits - 1] == zero)
fdigits--;
/* Create the necessary digit string, */
digitstring_zero(ds, idigits, fdigits + fextra);
/* copy the integer digits, if any, */
if (idigits > 0)
memcpy(ds->point - idigits, idigit, idigits);
/* and the fractional digits, if any. */
if (fdigits > 0)
memcpy(ds->point + 1, fdigit, fdigits);
/* Return a pointer to the first unparsed character. */
return src;
}
After updating its digits, one can call a helper function to remove any extra leading zeroes:
static inline void digitstring_ltrim(digitstring *ds)
{
if (ds && ds->point) {
const int zero = value_to_digit(0);
while (ds->idigits > 1 && ds->point[-ds->idigits] == zero)
ds->idigits--;
}
}
Adding two (unsigned) digit strings, possibly reusing one of the terms, is now quite simple to implement:
static void digitstring_add(digitstring *to, const digitstring *src1, const digitstring *src2)
{
digitstring result = DIGITSTRING_INIT;
unsigned int carry = 0;
int i, idigits, fdigits;
if (!to || !src1 || !src2) {
fprintf(stderr, "digitstring_add(): NULL digitstring specified.\n");
exit(EXIT_FAILURE);
}
/* For addition, the result has as many digits
as the longer source term. */
idigits = (src1->idigits >= src2->idigits) ? src1->idigits : src2->idigits;
fdigits = (src1->fdigits >= src2->fdigits) ? src1->fdigits : src2->fdigits;
/* Result needs possibly one more integer digit,
in case carry overflows. */
digitstring_zero(&result, idigits + 1, fdigits);
/* Addition loop, in order of increasing digit significance. */
for (i = -fdigits; i < idigits; i++) {
const unsigned int sum = digitstring_get(src1, i)
+ digitstring_get(src2, i)
+ carry;
digitstring_set(&result, i, sum % RADIX);
carry = sum / RADIX;
}
digitstring_set(&result, idigits, carry);
/* Trim leading zeroes. */
digitstring_ltrim(&result);
/* At this point, we can discard the target, even if it is actually
one of the sources, and copy the result to it. */
digitstring_free(to);
*to = result;
}
where RADIX
is the radix used (the number of unique digits, 2 for binary). Pay extra attention to the digit loop. -fdigits
is the least significant position in the result, and idigits-1
the most significant position. We need the accessor functions, because the source terms might not contain those digits at all (they are logically zero then).
These functions have been tested to work on both binary and octal number strings. I like this implementation, because it omits the decimal point if all terms are integers (so you get 12 + 33 = 45
), but (due to fextra
in digitstring_parse()
) if any of the terms have a decimal point, then the result will have at least one fractional digit (so 12. + 33 = 45.0
).