I'd like to suggest a function that allows you to estimate your maximum precision for a given operation in a brute force way:
def find_optimum(a,b, max_iter):
for i in range(max_iter):
print(i)
c = int((a+b)/2)
decimal.getcontext().prec = c
try:
dummy = decimal.Decimal(1)/decimal.Decimal(7) #your operation
a = c
print("no fail")
except MemoryError:
print("fail")
dummy = 1
b = c
print(c)
del dummy
This is just halving intervals one step at a time and looks if an error occurs. Calling with max_iter=10
and a=int(1e9), b=int(1e11)
gives:
>>> find_optimum(int(1e9), int(1e11), 10)
0
fail
50500000000
1
no fail
25750000000
2
no fail
38125000000
3
no fail
44312500000
4
fail
47406250000
5
fail
45859375000
6
no fail
45085937500
7
no fail
45472656250
8
no fail
45666015625
9
no fail
45762695312
This may give a rough idea of what you are dealing with. This took approx half an hour on i5-3470 and 16GB RAM so you really only would use it for testing purposes.
I don't think, that there is an actual exact way of getting the maximum precision for your operation, as you'd have to have exact knowledge of the dependency of your memory usage on memory consumption. I hope this helps you at least a bit and I would really like to know, what you need that kind of precision for.
EDIT I feel like this really needs to be added, since I read your comments under the top rated post here. Using arbitrarily high precision in this manner is not the way, that people calculate constants. You would program something, that utilizes disk space in a smart way (for example calcutating a bunch of digits in RAM and writing this bunch to a text file), but never only use RAM/swap only, because this will always limit your results. With modern algorithms to calculate pi, you don't need infinite RAM, you just put another 4TB hard drive in the machine and let it write the next digits. So far for mathematical constants.
Now for physical constants: They are not precise. They rely on measurement. I'm not quite sure atm (will edit) but I think the most exact physical constant has an error of 10**(-8). Throwing more precision at it, doesn't make it more exact, you just calculate more wrong numbers.
As an experiment though, this was a fun idea, which is why I even posted the answer in the first place.