With a moderate modification of @Shital Shah's solution, I've created a more general framework which can simply apply to various scenario:
import matplotlib
from matplotlib import pyplot as plt
class LiveLine:
def __init__(self, graph, fmt=''):
# LiveGraph object
self.graph = graph
# instant line
self.line, = self.graph.ax.plot([], [], fmt)
# holder of new lines
self.lines = []
def update(self, x_data, y_data):
# update the instant line
self.line.set_data(x_data, y_data)
self.graph.update_graph()
def addtive_plot(self, x_data, y_data, fmt=''):
# add new line in the same figure
line, = self.graph.ax.plot(x_data, y_data, fmt)
# store line in lines holder
self.lines.append(line)
# update figure
self.graph.update_graph()
# return line index
return self.lines.index(line)
def update_indexed_line(self, index, x_data, y_data):
# use index to update that line
self.lines[index].set_data(x_data, y_data)
self.graph.update_graph()
class LiveGraph:
def __init__(self, backend='nbAgg', figure_arg={}, window_title=None,
suptitle_arg={'t':None}, ax_label={'x':'', 'y':''}, ax_title=None):
# save current backend for later restore
self.origin_backend = matplotlib.get_backend()
# check if current backend meets target backend
if self.origin_backend != backend:
print("original backend:", self.origin_backend)
# matplotlib.use('nbAgg',warn=False, force=True)
plt.switch_backend(backend)
print("switch to backend:", matplotlib.get_backend())
# set figure
self.figure = plt.figure(**figure_arg)
self.figure.canvas.set_window_title(window_title)
self.figure.suptitle(**suptitle_arg)
# set axis
self.ax = self.figure.add_subplot(111)
self.ax.set_xlabel(ax_label['x'])
self.ax.set_ylabel(ax_label['y'])
self.ax.set_title(ax_title)
# holder of lines
self.lines = []
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
def close(self):
# check if current beckend meets original backend, if not, restore it
if matplotlib.get_backend() != self.origin_backend:
# matplotlib.use(self.origin_backend,warn=False, force=True)
plt.switch_backend(self.origin_backend)
print("restore to backend:", matplotlib.get_backend())
def add_line(self, fmt=''):
line = LiveLine(graph=self, fmt=fmt)
self.lines.append(line)
return line
def update_graph(self):
self.figure.gca().relim()
self.figure.gca().autoscale_view()
self.figure.canvas.draw()
With above 2 class, you can simply reproduce @Graham S's example:
import numpy as np
m = 100
n = 100
matrix = np.random.normal(0,1,m*n).reshape(m,n)
with LiveGraph(backend='nbAgg') as h:
line1 = h.add_line()
for i in range(0,100):
line1.update(range(len(matrix[i,:])), matrix[i,:])
Note that, the default backend is nbAgg
, you can pass other backend like qt5Agg
. When it is finished, it'll restore to your original backend.
and @Tom Hale's example:
with LiveGraph(figure_arg={'num':'DORMANT2'}, window_title='Canvas active title',
suptitle_arg={'t':'Figure title','fontsize':20},
ax_label={'x':'x label', 'y':''}, ax_title='Axes title') as g:
with LiveGraph() as h:
line1 = g.add_line()
line2 = h.add_line('rx')
end = 40
for i in range(end):
line1.addtive_plot(range(i,end), (i,)*(end-i))
line2.update(range(i,end), range(i,end))
Also, you can update particular line in the additive plot of @Tom Hale's example:
import numpy as np
with LiveGraph(figure_arg={'num':'DORMANT3'}, window_title='Canvas active title',
suptitle_arg={'t':'Figure title','fontsize':20},
ax_label={'x':'x label', 'y':''}, ax_title='Axes title') as g:
line1 = g.add_line()
end = 40
for i in range(end):
line_index = line1.addtive_plot(range(i,end), (i,)*(end-i))
for i in range(100):
j = int(20*(1+np.cos(i)))
# update line of index line_index
line1.update_indexed_line(line_index, range(j,end), (line_index,)*(end-j))
Note that, the second for loop is just for updating a particular line with index line_index
. you can change that index to other line's index.
In my case, I use it in machine learning training loop to progressively update learning curve.
import numpy as np
import time
# create a LiveGraph object
g = LiveGraph()
# add 2 lines
line1 = g.add_line()
line2 = g.add_line()
# create 2 list to receive training result
list1 = []
list2 = []
# training loop
for i in range(100):
# just training
time.sleep(0.1)
# get training result
list1.append(np.random.normal())
list2.append(np.random.normal())
# update learning curve
line1.update(np.arange(len(list1)), list1)
line2.update(np.arange(len(list2)), list2)
# don't forget to close
g.close()