I have a trained Keras model and I would like:
1) to replace Con2D layer with the same but without bias.
2) to add BatchNormalization layer before first Activation
How can I do this?
def keras_simple_model():
from keras.models import Model
from keras.layers import Input, Dense, GlobalAveragePooling2D
from keras.layers import Conv2D, MaxPooling2D, Activation
inputs1 = Input((28, 28, 1))
x = Conv2D(4, (3, 3), activation=None, padding='same', name='conv1')(inputs1)
x = Activation('relu')(x)
x = Conv2D(4, (3, 3), activation=None, padding='same', name='conv2')(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool1')(x)
x = Conv2D(8, (3, 3), activation=None, padding='same', name='conv3')(x)
x = Activation('relu')(x)
x = Conv2D(8, (3, 3), activation=None, padding='same', name='conv4')(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool2')(x)
x = GlobalAveragePooling2D()(x)
x = Dense(10, activation=None)(x)
x = Activation('softmax')(x)
model = Model(inputs=inputs1, outputs=x)
return model
if __name__ == '__main__':
model = keras_simple_model()
print(model.summary())