For any applicative,
a <$> b <*> c = liftA2 a b c
For functions,
liftA2 a b c x
= a (b x) (c x) -- by definition;
= (a . b) x (c x)
= ((a <$> b) <*> c) x
Thus
(+) <$> (+3) <*> (*100) $ 5
=
liftA2 (+) (+3) (*100) 5
=
(+) ((+3) 5) ((*100) 5)
=
(5+3) + (5*100)
(the long version of this answer follows.)
Pure math has no time. Pure Haskell has no time. Speaking in verbs ("applicative functor applies" etc.) can be confusing ("applies... when?...").
Instead, (<*>)
is a combinator which combines a "computation" (denoted by an applicative functor) carrying a function (in the context of that type of computations) and a "computation" of the same type, carrying a value (in like context), into one combined "computation" that carries out the application of that function to that value (in such context).
"Computation" is used to contrast it with a pure Haskell "calculations" (after Philip Wadler's "Calculating is better than Scheming" paper, itself referring to David Turner's Kent Recursive Calculator language, one of predecessors of Miranda, the (main) predecessor of Haskell).
"Computations" might or might not be pure themselves, that's an orthogonal issue. But mainly what it means, is that "computations" embody a generalized function call protocol. They might "do" something in addition to / as part of / carrying out the application of a function to its argument. Or in types,
( $ ) :: (a -> b) -> a -> b
(<$>) :: (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b
(=<<) :: (a -> f b) -> f a -> f b
With functions, the context is application (another one), and to recover the value -- be it a function or an argument -- the application to a common argument is to be performed.
(bear with me, we're almost there).
The pattern a <$> b <*> c
is also expressible as liftA2 a b c
. And so, the "functions" applicative functor "computation" type is defined by
liftA2 h x y s = let x' = x s -- embellished application of h to x and y
y' = y s in -- in context of functions, or Reader
h x' y'
-- liftA2 h x y = let x' = x -- non-embellished application, or Identity
-- y' = y in
-- h x' y'
-- liftA2 h x y s = let (x',s') = x s -- embellished application of h to x and y
-- (y',s'') = y s' in -- in context of
-- (h x' y', s'') -- state-passing computations, or State
-- liftA2 h x y = let (x',w) = x -- embellished application of h to x and y
-- (y',w') = y in -- in context of
-- (h x' y', w++w') -- logging computations, or Writer
-- liftA2 h x y = [h x' y' | -- embellished application of h to x and y
-- x' <- x, -- in context of
-- y' <- y ] -- nondeterministic computations, or List
-- ( and for Monads we define `liftBind h x k =` and replace `y` with `k x'`
-- in the bodies of the above combinators; then liftA2 becomes liftBind: )
-- liftA2 :: (a -> b -> c) -> f a -> f b -> f c
-- liftBind :: (a -> b -> c) -> f a -> (a -> f b) -> f c
-- (>>=) = liftBind (\a b -> b) :: f a -> (a -> f b) -> f b
And in fact all the above snippets can be just written with ApplicativeDo as liftA2 h x y = do { x' <- x ; y' <- y ; pure (h x' y') }
or even more intuitively as
liftA2 h x y = [h x' y' | x' <- x, y' <- y]
, with Monad Comprehensions, since all the above computation types are monads as well as applicative functors. This shows by the way that (<*>) = liftA2 ($)
, which one might find illuminating as well.
Indeed,
> :t let liftA2 h x y r = h (x r) (y r) in liftA2
:: (a -> b -> c) -> (t -> a) -> (t -> b) -> (t -> c)
> :t liftA2 -- the built-in one
liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
i.e. the types match when we take f a ~ (t -> a) ~ (->) t a
, i.e. f ~ (->) t
.
And so, we're already there:
(+) <$> (+3) <*> (*100) $ 5
=
liftA2 (+) (+3) (*100) 5
=
(+) ((+3) 5) ((*100) 5)
=
(+) (5+3) (5*100)
=
(5+3) + (5*100)
It's just how liftA2
is defined for this type, Applicative ((->) t) => ...
:
instance Applicative ((->) t) where
pure x t = x
liftA2 h x y t = h (x t) (y t)
There's no need to define (<*>)
. The source code says:
Minimal complete definition
pure, ((<*>) | liftA2)
So now you've been wanting to ask for a long time, why is it that a <$> b <*> c
is equivalent to liftA2 a b c
?
The short answer is, it just is. One can be defined in terms of the other -- i.e. (<*>)
can be defined via liftA2
,
g <*> x = liftA2 id g x -- i.e. (<*>) = liftA2 id = liftA2 ($)
-- (g <*> x) t = liftA2 id g x t
-- = id (g t) (x t)
-- = (id . g) t (x t) -- = (id <$> g <*> x) t
-- = g t (x t)
(which is exactly as it is defined in the source),
and it is a law that every Applicative Functor must follow, that h <$> g = pure h <*> g
.
Lastly,
liftA2 h g x == pure h <*> g <*> x
-- h g x == (h g) x
because <*>
associates to the left: it is infixl 4 <*>
.