15

I have two matrices that I want to apply a function to, by rows:

matrixA
           GSM83009  GSM83037  GSM83002  GSM83029  GSM83041
100001_at  5.873321  5.416164  3.512227  6.064150  3.713696
100005_at  5.807870  6.810829  6.105804  6.644000  6.142413
100006_at  2.757023  4.144046  1.622930  1.831877  3.694880

matrixB
          GSM82939 GSM82940 GSM82974 GSM82975
100001_at 3.673556 2.372952 3.228049 3.555816
100005_at 6.916954 6.909533 6.928252 7.003377
100006_at 4.277985 4.856986 3.670161 4.075533

I've found several similar questions, but not a whole lot of answers: mapply for matrices, Multi matrix row-wise mapply?. The code I have now splits the matrices by row into lists, but having to split it makes it rather slow and not much faster than a for loop, considering I have almost 9000 rows in each matrix:

scores <- mapply(t.test.stat, split(matrixA, row(matrixA)), split(matrixB, row(matrixB)))

The function itself is very simple, just finding the t-value:

t.test.stat <- function(x, y)
{
    return( (mean(x) - mean(y)) / sqrt(var(x)/length(x) + var(y)/length(y)) )
}
Edd
  • 1,925
  • 1
  • 17
  • 15

2 Answers2

13

Splitting the matrices isn't the biggest contributor to evaluation time.

set.seed(21)
matrixA <- matrix(rnorm(5 * 9000), nrow = 9000)
matrixB <- matrix(rnorm(4 * 9000), nrow = 9000)

system.time( scores <- mapply(t.test.stat,
    split(matrixA, row(matrixA)), split(matrixB, row(matrixB))) )
#    user  system elapsed 
#    1.57    0.00    1.58 
smA <- split(matrixA, row(matrixA))
smB <- split(matrixB, row(matrixB))
system.time( scores <- mapply(t.test.stat, smA, smB) )
#    user  system elapsed 
#    1.14    0.00    1.14 

Look at the output from Rprof to see that most of the time is--not surprisingly--spent evaluating t.test.stat (mean, var, etc.). Basically, there's quite a bit of overhead from function calls.

Rprof()
scores <- mapply(t.test.stat, smA, smB)
Rprof(NULL)
summaryRprof()

You may be able to find faster generalized solutions, but none will approach the speed of the vectorized solution below.

Since your function is simple, you can take advantage of the vectorized rowMeans function to do this almost instantaneously (though it's a bit messy):

system.time({
ncA <- NCOL(matrixA)
ncB <- NCOL(matrixB)
ans <- (rowMeans(matrixA)-rowMeans(matrixB)) /
  sqrt( rowMeans((matrixA-rowMeans(matrixA))^2)*(ncA/(ncA-1))/ncA +
        rowMeans((matrixB-rowMeans(matrixB))^2)*(ncB/(ncB-1))/ncB )
})
#    user  system elapsed 
#      0       0       0 
head(ans)
# [1]  0.8272511 -1.0965269  0.9862844 -0.6026452 -0.2477661  1.1896181

UPDATE
Here's a "cleaner" version using a rowVars function:

rowVars <- function(x, na.rm=FALSE, dims=1L) {
  rowMeans((x-rowMeans(x, na.rm, dims))^2, na.rm, dims)*(NCOL(x)/(NCOL(x)-1))
}
ans <- (rowMeans(matrixA)-rowMeans(matrixB)) /
  sqrt( rowVars(matrixA)/NCOL(matrixA) + rowVars(matrixB)/NCOL(matrixB) )
Joshua Ulrich
  • 173,410
  • 32
  • 338
  • 418
  • 1
    that's a clean vectorization. How so, messy? ;) – Joris Meys Apr 11 '11 at 21:59
  • @Joris: messy in terms of many lines of code. I guess a rowVars function would clean it up. – Joshua Ulrich Apr 12 '11 at 02:22
  • Ooh sneaky, I like it. Tyler's solution is more generalizable but unfortunately also slower :/. I wonder if there is an efficient general solution. – Edd Apr 12 '11 at 04:41
  • 1
    @Edd: the most efficient general solution would require a _very_ efficient `t.test.stat` function. Even then, you would have to evaluate it 9000 times, which would still be much slower than my less general solution. Opportunity cost strikes again! ;-) – Joshua Ulrich Apr 12 '11 at 13:40
3

This solution avoids splitting, and lists, so maybe it will be faster than your version:

## original data:
tmp1 <- matrix(sample(1:100, 20), nrow = 5)
tmp2 <- matrix(sample(1:100, 20), nrow = 5)

## combine them together
tmp3 <- cbind(tmp1, tmp2)

## calculate t.stats:
t.stats <- apply(tmp3, 1, function(x) t.test(x[1:ncol(tmp1)], 
  x[(1 + ncol(tmp1)):ncol(tmp3)])$statistic)

Edit: Just tested it on two matrices of 9000 rows and 5 columns each, and it completed in less than 6 seconds:

tmp1 <- matrix(rnorm(5 * 9000), nrow = 9000)
tmp2 <- matrix(rnorm(5 * 9000), nrow = 9000)
tmp3 <- cbind(tmp1, tmp2)
system.time(t.st <- apply(tmp3, 1, function(x) t.test(x[1:5], x[6:10])$statistic))

-> user system elapsed

-> 5.640 0.012 5.705

Tyler
  • 9,872
  • 2
  • 33
  • 57