207

Can I extract the underlying decision-rules (or 'decision paths') from a trained tree in a decision tree as a textual list?

Something like:

if A>0.4 then if B<0.2 then if C>0.8 then class='X'
desertnaut
  • 57,590
  • 26
  • 140
  • 166
Dror Hilman
  • 6,837
  • 9
  • 39
  • 56
  • 4
    possible duplicate of [How do I find which attributes my tree splits on, when using scikit-learn?](http://stackoverflow.com/questions/20156951/how-do-i-find-which-attributes-my-tree-splits-on-when-using-scikit-learn) – lejlot Nov 26 '13 at 19:26
  • Did you ever find an answer to this problem? I have to export the decision tree rules in a SAS data step format which is almost exactly as you have it listed. – Zelazny7 Mar 06 '14 at 16:39
  • 1
    You can use the package [sklearn-porter](https://github.com/nok/sklearn-porter) to export and transpile decision trees (also random forest and boosted trees) to C, Java, JavaScript and others. – Darius Dec 27 '18 at 12:48
  • You can check this link- https://www.kdnuggets.com/2017/05/simplifying-decision-tree-interpretation-decision-rules-python.html – yogesh agrawal Jan 10 '19 at 07:17
  • I've summarized 3 ways to extract rules from the Decision Tree in my [article](https://mljar.com/blog/extract-rules-decision-tree/). One method is based on 'paulkernfeld' code and produces a human-friendly format of text rules. – pplonski Feb 25 '21 at 13:56

25 Answers25

180

I believe that this answer is more correct than the other answers here:

from sklearn.tree import _tree

def tree_to_code(tree, feature_names):
    tree_ = tree.tree_
    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]
    print "def tree({}):".format(", ".join(feature_names))

    def recurse(node, depth):
        indent = "  " * depth
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            print "{}if {} <= {}:".format(indent, name, threshold)
            recurse(tree_.children_left[node], depth + 1)
            print "{}else:  # if {} > {}".format(indent, name, threshold)
            recurse(tree_.children_right[node], depth + 1)
        else:
            print "{}return {}".format(indent, tree_.value[node])

    recurse(0, 1)

This prints out a valid Python function. Here's an example output for a tree that is trying to return its input, a number between 0 and 10.

def tree(f0):
  if f0 <= 6.0:
    if f0 <= 1.5:
      return [[ 0.]]
    else:  # if f0 > 1.5
      if f0 <= 4.5:
        if f0 <= 3.5:
          return [[ 3.]]
        else:  # if f0 > 3.5
          return [[ 4.]]
      else:  # if f0 > 4.5
        return [[ 5.]]
  else:  # if f0 > 6.0
    if f0 <= 8.5:
      if f0 <= 7.5:
        return [[ 7.]]
      else:  # if f0 > 7.5
        return [[ 8.]]
    else:  # if f0 > 8.5
      return [[ 9.]]

Here are some stumbling blocks that I see in other answers:

  1. Using tree_.threshold == -2 to decide whether a node is a leaf isn't a good idea. What if it's a real decision node with a threshold of -2? Instead, you should look at tree.feature or tree.children_*.
  2. The line features = [feature_names[i] for i in tree_.feature] crashes with my version of sklearn, because some values of tree.tree_.feature are -2 (specifically for leaf nodes).
  3. There is no need to have multiple if statements in the recursive function, just one is fine.
NirIzr
  • 3,131
  • 2
  • 30
  • 49
paulkernfeld
  • 2,171
  • 1
  • 16
  • 16
  • 1
    This code works great for me. However, I have 500+ feature_names so the output code is almost impossible for a human to understand. Is there a way to let me only input the feature_names I am curious about into the function? – user3768495 Sep 08 '17 at 19:05
  • 3
    I agree with the previous comment. IIUC, `print "{}return {}".format(indent, tree_.value[node])` should be changed to `print "{}return {}".format(indent, np.argmax(tree_.value[node][0]))` for the function to return the class index. – soupault Oct 19 '17 at 09:56
  • Hey @paulkernfeld, thanks a lot for this! Have you done the same for random forest? – Nathan Lloyd Nov 01 '17 at 18:42
  • @NathanLloyd I think I originally wrote this code for a random forest. If I recall correctly, all I had to do was to loop over each tree and run this code on it. – paulkernfeld Nov 02 '17 at 22:31
  • 2
    @paulkernfeld Ah yes, I see that you can loop over `RandomForestClassifier.estimators_`, but I wasn't able to work out how to combine the estimators' results. – Nathan Lloyd Nov 02 '17 at 23:36
  • @paulkernfeld how to do the following for a single sample rather than the whole dataset –  Feb 20 '18 at 15:58
  • 7
    I couldn't get this working in python 3, the _tree bits don't seem like they'd ever work and the TREE_UNDEFINED was not defined. [This link helped me.](https://web.archive.org/web/20171005203850/http://www.kdnuggets.com/2017/05/simplifying-decision-tree-interpretation-decision-rules-python.html) While the exported code isn't directly runnable in python, it is c-like and pretty easy to translate to other languages: https://web.archive.org/web/20171005203850/http://www.kdnuggets.com/2017/05/simplifying-decision-tree-interpretation-decision-rules-python.html – Josiah Aug 01 '18 at 20:24
  • What if I want to return the predicted class of the node instead of the value? – coco Nov 21 '19 at 19:55
  • 2
    @Josiah, add () to the print statements to make it work in python3. e.g. `print "bla"` => `print("bla")` – Nir Apr 26 '20 at 19:24
52

I created my own function to extract the rules from the decision trees created by sklearn:

import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier

# dummy data:
df = pd.DataFrame({'col1':[0,1,2,3],'col2':[3,4,5,6],'dv':[0,1,0,1]})

# create decision tree
dt = DecisionTreeClassifier(max_depth=5, min_samples_leaf=1)
dt.fit(df.ix[:,:2], df.dv)

This function first starts with the nodes (identified by -1 in the child arrays) and then recursively finds the parents. I call this a node's 'lineage'. Along the way, I grab the values I need to create if/then/else SAS logic:

def get_lineage(tree, feature_names):
     left      = tree.tree_.children_left
     right     = tree.tree_.children_right
     threshold = tree.tree_.threshold
     features  = [feature_names[i] for i in tree.tree_.feature]

     # get ids of child nodes
     idx = np.argwhere(left == -1)[:,0]     

     def recurse(left, right, child, lineage=None):          
          if lineage is None:
               lineage = [child]
          if child in left:
               parent = np.where(left == child)[0].item()
               split = 'l'
          else:
               parent = np.where(right == child)[0].item()
               split = 'r'

          lineage.append((parent, split, threshold[parent], features[parent]))

          if parent == 0:
               lineage.reverse()
               return lineage
          else:
               return recurse(left, right, parent, lineage)

     for child in idx:
          for node in recurse(left, right, child):
               print node

The sets of tuples below contain everything I need to create SAS if/then/else statements. I do not like using do blocks in SAS which is why I create logic describing a node's entire path. The single integer after the tuples is the ID of the terminal node in a path. All of the preceding tuples combine to create that node.

In [1]: get_lineage(dt, df.columns)
(0, 'l', 0.5, 'col1')
1
(0, 'r', 0.5, 'col1')
(2, 'l', 4.5, 'col2')
3
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'l', 2.5, 'col1')
5
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'r', 2.5, 'col1')
6

GraphViz output of example tree

Zelazny7
  • 39,946
  • 18
  • 70
  • 84
  • is this type of tree is correct because col1 is comming again one is col1<=0.50000 and one col1<=2.5000 if yes, is this any type of recursion whish is used in the library – jayant singh Mar 01 '17 at 16:12
  • the right branch would have records between `(0.5, 2.5]`. The trees are made with recursive partitioning. There is nothing preventing a variable from being selected multiple times. – Zelazny7 Mar 01 '17 at 17:25
  • okay can you explain the recursion part what happens xactly cause i have used it in my code and similar result is seen – jayant singh Mar 01 '17 at 17:38
  • How to modify this code to get the class and rule in a dataframe like structure ? – Soumya Boral Sep 04 '20 at 19:25
46

Scikit learn introduced a delicious new method called export_text in version 0.21 (May 2019) to extract the rules from a tree. Documentation here. It's no longer necessary to create a custom function.

Once you've fit your model, you just need two lines of code. First, import export_text:

from sklearn.tree import export_text

Second, create an object that will contain your rules. To make the rules look more readable, use the feature_names argument and pass a list of your feature names. For example, if your model is called model and your features are named in a dataframe called X_train, you could create an object called tree_rules:

tree_rules = export_text(model, feature_names=list(X_train.columns))

Then just print or save tree_rules. Your output will look like this:

|--- Age <= 0.63
|   |--- EstimatedSalary <= 0.61
|   |   |--- Age <= -0.16
|   |   |   |--- class: 0
|   |   |--- Age >  -0.16
|   |   |   |--- EstimatedSalary <= -0.06
|   |   |   |   |--- class: 0
|   |   |   |--- EstimatedSalary >  -0.06
|   |   |   |   |--- EstimatedSalary <= 0.40
|   |   |   |   |   |--- EstimatedSalary <= 0.03
|   |   |   |   |   |   |--- class: 1
easf
  • 25
  • 5
yzerman
  • 909
  • 9
  • 8
39

I modified the code submitted by Zelazny7 to print some pseudocode:

def get_code(tree, feature_names):
        left      = tree.tree_.children_left
        right     = tree.tree_.children_right
        threshold = tree.tree_.threshold
        features  = [feature_names[i] for i in tree.tree_.feature]
        value = tree.tree_.value

        def recurse(left, right, threshold, features, node):
                if (threshold[node] != -2):
                        print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
                        if left[node] != -1:
                                recurse (left, right, threshold, features,left[node])
                        print "} else {"
                        if right[node] != -1:
                                recurse (left, right, threshold, features,right[node])
                        print "}"
                else:
                        print "return " + str(value[node])

        recurse(left, right, threshold, features, 0)

if you call get_code(dt, df.columns) on the same example you will obtain:

if ( col1 <= 0.5 ) {
return [[ 1.  0.]]
} else {
if ( col2 <= 4.5 ) {
return [[ 0.  1.]]
} else {
if ( col1 <= 2.5 ) {
return [[ 1.  0.]]
} else {
return [[ 0.  1.]]
}
}
}
Community
  • 1
  • 1
Daniele
  • 821
  • 7
  • 18
  • 1
    Can you tell , what exactly [[ 1. 0.]] in the return statement means in the above output . I am not a Python guy , but working on same sort of thing. So it will be good for me if you please prove some details so that it will be easier for me. – Subhradip Bose May 30 '15 at 02:14
  • 1
    @user3156186 It means that there is one object in the class '0' and zero objects in the class '1' – Daniele Jun 03 '15 at 07:39
  • 1
    @Daniele, do you know how the classes are ordered? I would guess alphanumeric, but I haven't found confirmation anywhere. – IanS Sep 04 '15 at 08:27
  • Thanks! For the edge case scenario where the threshold value is actually -2, we may need to change `(threshold[node] != -2)` to `( left[node] != -1)` (similar to the method below for getting ids of child nodes) – tlingf May 12 '16 at 21:26
  • 1
    @Daniele, any idea how to make your function "get_code" "return" a value and not "print" it, because I need to send it to another function ? – RoyaumeIX May 26 '16 at 04:52
  • @Daniele can you kindly check thos https://stackoverflow.com/questions/48880557/how-to-print-and-visualize-the-average-randomforestclassifier-of-all-trees-for-a –  Feb 20 '18 at 09:27
19

There is a new DecisionTreeClassifier method, decision_path, in the 0.18.0 release. The developers provide an extensive (well-documented) walkthrough.

The first section of code in the walkthrough that prints the tree structure seems to be OK. However, I modified the code in the second section to interrogate one sample. My changes denoted with # <--

Edit The changes marked by # <-- in the code below have since been updated in walkthrough link after the errors were pointed out in pull requests #8653 and #10951. It's much easier to follow along now.

sample_id = 0
node_index = node_indicator.indices[node_indicator.indptr[sample_id]:
                                    node_indicator.indptr[sample_id + 1]]

print('Rules used to predict sample %s: ' % sample_id)
for node_id in node_index:

    if leave_id[sample_id] == node_id:  # <-- changed != to ==
        #continue # <-- comment out
        print("leaf node {} reached, no decision here".format(leave_id[sample_id])) # <--

    else: # < -- added else to iterate through decision nodes
        if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
            threshold_sign = "<="
        else:
            threshold_sign = ">"

        print("decision id node %s : (X[%s, %s] (= %s) %s %s)"
              % (node_id,
                 sample_id,
                 feature[node_id],
                 X_test[sample_id, feature[node_id]], # <-- changed i to sample_id
                 threshold_sign,
                 threshold[node_id]))

Rules used to predict sample 0: 
decision id node 0 : (X[0, 3] (= 2.4) > 0.800000011921)
decision id node 2 : (X[0, 2] (= 5.1) > 4.94999980927)
leaf node 4 reached, no decision here

Change the sample_id to see the decision paths for other samples. I haven't asked the developers about these changes, just seemed more intuitive when working through the example.

Kevin
  • 7,960
  • 5
  • 36
  • 57
  • you my friend are a legend ! any ideas how to plot the decision tree for that specific sample ? much help is appreciated –  Feb 20 '18 at 14:45
  • 1
    Thanks Victor, it's probably best to ask this as a separate question since plotting requirements can be specific to a user's needs. You'll probably get a good response if you provide an idea of what you want the output to look like. – Kevin Feb 20 '18 at 15:12
  • hey kevin, I created the question https://stackoverflow.com/questions/48888893/visualize-the-tree-for-a-specific-sample-in-decision-tree-rather-than-the-whole –  Feb 20 '18 at 15:38
  • would you be so kind to take a look at: https://stackoverflow.com/questions/52654280/visualizing-decision-tree-not-using-graphviz-web – Alexander Chervov Oct 05 '18 at 07:13
  • Can you please explain the part called node_index, not getting that part. what does it do? – Anindya Sankar Dey Mar 30 '20 at 13:21
13
from StringIO import StringIO
out = StringIO()
out = tree.export_graphviz(clf, out_file=out)
print out.getvalue()

You can see a digraph Tree. Then, clf.tree_.feature and clf.tree_.value are array of nodes splitting feature and array of nodes values respectively. You can refer to more details from this github source.

lennon310
  • 12,503
  • 11
  • 43
  • 61
  • 2
    Yes, I know how to draw the tree - but I need the more textual version - the rules. something like: http://orange.biolab.si/docs/latest/reference/rst/Orange.classification.tree/#printing-the-tree – Dror Hilman Nov 27 '13 at 20:20
8

I needed a more human-friendly format of rules from the Decision Tree. I'm building open-source AutoML Python package and many times MLJAR users want to see the exact rules from the tree.

That's why I implemented a function based on paulkernfeld answer.

def get_rules(tree, feature_names, class_names):
    tree_ = tree.tree_
    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]

    paths = []
    path = []
    
    def recurse(node, path, paths):
        
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            p1, p2 = list(path), list(path)
            p1 += [f"({name} <= {np.round(threshold, 3)})"]
            recurse(tree_.children_left[node], p1, paths)
            p2 += [f"({name} > {np.round(threshold, 3)})"]
            recurse(tree_.children_right[node], p2, paths)
        else:
            path += [(tree_.value[node], tree_.n_node_samples[node])]
            paths += [path]
            
    recurse(0, path, paths)

    # sort by samples count
    samples_count = [p[-1][1] for p in paths]
    ii = list(np.argsort(samples_count))
    paths = [paths[i] for i in reversed(ii)]
    
    rules = []
    for path in paths:
        rule = "if "
        
        for p in path[:-1]:
            if rule != "if ":
                rule += " and "
            rule += str(p)
        rule += " then "
        if class_names is None:
            rule += "response: "+str(np.round(path[-1][0][0][0],3))
        else:
            classes = path[-1][0][0]
            l = np.argmax(classes)
            rule += f"class: {class_names[l]} (proba: {np.round(100.0*classes[l]/np.sum(classes),2)}%)"
        rule += f" | based on {path[-1][1]:,} samples"
        rules += [rule]
        
    return rules

The rules are sorted by the number of training samples assigned to each rule. For each rule, there is information about the predicted class name and probability of prediction for classification tasks. For the regression task, only information about the predicted value is printed.

Example

from sklearn import datasets
from sklearn.tree import DecisionTreeRegressor
from sklearn import tree
from sklearn.tree import _tree

# Prepare the data data
boston = datasets.load_boston()
X = boston.data
y = boston.target

# Fit the regressor, set max_depth = 3
regr = DecisionTreeRegressor(max_depth=3, random_state=1234)
model = regr.fit(X, y)

# Print rules
rules = get_rules(regr, boston.feature_names, None)
for r in rules:
    print(r)

The printed rules:

if (RM <= 6.941) and (LSTAT <= 14.4) and (DIS > 1.385) then response: 22.905 | based on 250 samples
if (RM <= 6.941) and (LSTAT > 14.4) and (CRIM <= 6.992) then response: 17.138 | based on 101 samples
if (RM <= 6.941) and (LSTAT > 14.4) and (CRIM > 6.992) then response: 11.978 | based on 74 samples
if (RM > 6.941) and (RM <= 7.437) and (NOX <= 0.659) then response: 33.349 | based on 43 samples
if (RM > 6.941) and (RM > 7.437) and (PTRATIO <= 19.65) then response: 45.897 | based on 29 samples
if (RM <= 6.941) and (LSTAT <= 14.4) and (DIS <= 1.385) then response: 45.58 | based on 5 samples
if (RM > 6.941) and (RM <= 7.437) and (NOX > 0.659) then response: 14.4 | based on 3 samples
if (RM > 6.941) and (RM > 7.437) and (PTRATIO > 19.65) then response: 21.9 | based on 1 samples

I've summarized the ways to extract rules from the Decision Tree in my article: Extract Rules from Decision Tree in 3 Ways with Scikit-Learn and Python.

Dudelstein
  • 383
  • 3
  • 16
pplonski
  • 5,023
  • 1
  • 30
  • 34
  • 2
    Remember to import: `from sklearn.tree import _tree` – JP Zhang Apr 29 '21 at 03:44
  • and "import numpy as np" too – bhamadicharef Aug 12 '21 at 11:26
  • @pplonski ... I am not able to make your code work for a xgboost instead of DecisionTreeRegressor. If you can help I would very much appreciate, I am a MATLAB guy starting to learn Python. – bhamadicharef Aug 12 '21 at 13:58
  • @bhamadicharef it wont work for xgboost. The xgboost is the ensemble of trees. First you need to extract a selected tree from the xgboost. You need to store it in sklearn-tree format and then you can use above code. – pplonski Aug 13 '21 at 09:26
  • @pplonski I understand what you mean, but not yet very familiar with sklearn-tree format. If I come with something useful, I will share. I parse simple and small rules into matlab code but the model I have has 3000 trees with depth of 6 so a robust and especially recursive method like your is very useful. Learning ... – bhamadicharef Aug 14 '21 at 19:21
6

Now you can use export_text.

from sklearn.tree import export_text

r = export_text(loan_tree, feature_names=(list(X_train.columns)))
print(r)

A complete example from [sklearn][1]

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
iris = load_iris()
X = iris['data']
y = iris['target']
decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
decision_tree = decision_tree.fit(X, y)
r = export_text(decision_tree, feature_names=iris['feature_names'])
print(r)
kevin
  • 1,914
  • 4
  • 25
  • 30
5

This is the code you need

I have modified the top liked code to indent in a jupyter notebook python 3 correctly

import numpy as np
from sklearn.tree import _tree

def tree_to_code(tree, feature_names):
    tree_ = tree.tree_
    feature_name = [feature_names[i] 
                    if i != _tree.TREE_UNDEFINED else "undefined!" 
                    for i in tree_.feature]
    print("def tree({}):".format(", ".join(feature_names)))

    def recurse(node, depth):
        indent = "    " * depth
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            print("{}if {} <= {}:".format(indent, name, threshold))
            recurse(tree_.children_left[node], depth + 1)
            print("{}else:  # if {} > {}".format(indent, name, threshold))
            recurse(tree_.children_right[node], depth + 1)
        else:
            print("{}return {}".format(indent, np.argmax(tree_.value[node])))

    recurse(0, 1)
desertnaut
  • 57,590
  • 26
  • 140
  • 166
4

Just because everyone was so helpful I'll just add a modification to Zelazny7 and Daniele's beautiful solutions. This one is for python 2.7, with tabs to make it more readable:

def get_code(tree, feature_names, tabdepth=0):
    left      = tree.tree_.children_left
    right     = tree.tree_.children_right
    threshold = tree.tree_.threshold
    features  = [feature_names[i] for i in tree.tree_.feature]
    value = tree.tree_.value

    def recurse(left, right, threshold, features, node, tabdepth=0):
            if (threshold[node] != -2):
                    print '\t' * tabdepth,
                    print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
                    if left[node] != -1:
                            recurse (left, right, threshold, features,left[node], tabdepth+1)
                    print '\t' * tabdepth,
                    print "} else {"
                    if right[node] != -1:
                            recurse (left, right, threshold, features,right[node], tabdepth+1)
                    print '\t' * tabdepth,
                    print "}"
            else:
                    print '\t' * tabdepth,
                    print "return " + str(value[node])

    recurse(left, right, threshold, features, 0)
Ruslan
  • 911
  • 2
  • 11
  • 28
4

I've been going through this, but i needed the rules to be written in this format

if A>0.4 then if B<0.2 then if C>0.8 then class='X' 

So I adapted the answer of @paulkernfeld (thanks) that you can customize to your need

def tree_to_code(tree, feature_names, Y):
    tree_ = tree.tree_
    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]
    pathto=dict()

    global k
    k = 0
    def recurse(node, depth, parent):
        global k
        indent = "  " * depth

        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            s= "{} <= {} ".format( name, threshold, node )
            if node == 0:
                pathto[node]=s
            else:
                pathto[node]=pathto[parent]+' & ' +s

            recurse(tree_.children_left[node], depth + 1, node)
            s="{} > {}".format( name, threshold)
            if node == 0:
                pathto[node]=s
            else:
                pathto[node]=pathto[parent]+' & ' +s
            recurse(tree_.children_right[node], depth + 1, node)
        else:
            k=k+1
            print(k,')',pathto[parent], tree_.value[node])
    recurse(0, 1, 0)
Rene B.
  • 6,557
  • 7
  • 46
  • 72
Ala Ham
  • 169
  • 1
  • 7
3

Codes below is my approach under anaconda python 2.7 plus a package name "pydot-ng" to making a PDF file with decision rules. I hope it is helpful.

from sklearn import tree

clf = tree.DecisionTreeClassifier(max_leaf_nodes=n)
clf_ = clf.fit(X, data_y)

feature_names = X.columns
class_name = clf_.classes_.astype(int).astype(str)

def output_pdf(clf_, name):
    from sklearn import tree
    from sklearn.externals.six import StringIO
    import pydot_ng as pydot
    dot_data = StringIO()
    tree.export_graphviz(clf_, out_file=dot_data,
                         feature_names=feature_names,
                         class_names=class_name,
                         filled=True, rounded=True,
                         special_characters=True,
                          node_ids=1,)
    graph = pydot.graph_from_dot_data(dot_data.getvalue())
    graph.write_pdf("%s.pdf"%name)

output_pdf(clf_, name='filename%s'%n)

a tree graphy show here

TED Zhao
  • 59
  • 3
3

This builds on @paulkernfeld 's answer. If you have a dataframe X with your features and a target dataframe y with your resonses and you you want to get an idea which y value ended in which node (and also ant to plot it accordingly) you can do the following:

    def tree_to_code(tree, feature_names):
        from sklearn.tree import _tree
        codelines = []
        codelines.append('def get_cat(X_tmp):\n')
        codelines.append('   catout = []\n')
        codelines.append('   for codelines in range(0,X_tmp.shape[0]):\n')
        codelines.append('      Xin = X_tmp.iloc[codelines]\n')
        tree_ = tree.tree_
        feature_name = [
            feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
            for i in tree_.feature
        ]
        #print "def tree({}):".format(", ".join(feature_names))

        def recurse(node, depth):
            indent = "      " * depth
            if tree_.feature[node] != _tree.TREE_UNDEFINED:
                name = feature_name[node]
                threshold = tree_.threshold[node]
                codelines.append ('{}if Xin["{}"] <= {}:\n'.format(indent, name, threshold))
                recurse(tree_.children_left[node], depth + 1)
                codelines.append( '{}else:  # if Xin["{}"] > {}\n'.format(indent, name, threshold))
                recurse(tree_.children_right[node], depth + 1)
            else:
                codelines.append( '{}mycat = {}\n'.format(indent, node))

        recurse(0, 1)
        codelines.append('      catout.append(mycat)\n')
        codelines.append('   return pd.DataFrame(catout,index=X_tmp.index,columns=["category"])\n')
        codelines.append('node_ids = get_cat(X)\n')
        return codelines
    mycode = tree_to_code(clf,X.columns.values)

    # now execute the function and obtain the dataframe with all nodes
    exec(''.join(mycode))
    node_ids = [int(x[0]) for x in node_ids.values]
    node_ids2 = pd.DataFrame(node_ids)

    print('make plot')
    import matplotlib.cm as cm
    colors = cm.rainbow(np.linspace(0, 1, 1+max( list(set(node_ids)))))
    #plt.figure(figsize=cm2inch(24, 21))
    for i in list(set(node_ids)):
        plt.plot(y[node_ids2.values==i],'o',color=colors[i], label=str(i))  
    mytitle = ['y colored by node']
    plt.title(mytitle ,fontsize=14)
    plt.xlabel('my xlabel')
    plt.ylabel(tagname)
    plt.xticks(rotation=70)       
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.00), shadow=True, ncol=9)
    plt.tight_layout()
    plt.show()
    plt.close 

not the most elegant version but it does the job...

horseshoe
  • 1,437
  • 14
  • 42
3

Here is a way to translate the whole tree into a single (not necessarily too human-readable) python expression using the SKompiler library:

from skompiler import skompile
skompile(dtree.predict).to('python/code')
KT.
  • 10,815
  • 4
  • 47
  • 71
2

Here is a function, printing rules of a scikit-learn decision tree under python 3 and with offsets for conditional blocks to make the structure more readable:

def print_decision_tree(tree, feature_names=None, offset_unit='    '):
    '''Plots textual representation of rules of a decision tree
    tree: scikit-learn representation of tree
    feature_names: list of feature names. They are set to f1,f2,f3,... if not specified
    offset_unit: a string of offset of the conditional block'''

    left      = tree.tree_.children_left
    right     = tree.tree_.children_right
    threshold = tree.tree_.threshold
    value = tree.tree_.value
    if feature_names is None:
        features  = ['f%d'%i for i in tree.tree_.feature]
    else:
        features  = [feature_names[i] for i in tree.tree_.feature]        

    def recurse(left, right, threshold, features, node, depth=0):
            offset = offset_unit*depth
            if (threshold[node] != -2):
                    print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) {")
                    if left[node] != -1:
                            recurse (left, right, threshold, features,left[node],depth+1)
                    print(offset+"} else {")
                    if right[node] != -1:
                            recurse (left, right, threshold, features,right[node],depth+1)
                    print(offset+"}")
            else:
                    print(offset+"return " + str(value[node]))

    recurse(left, right, threshold, features, 0,0)
Apogentus
  • 6,371
  • 6
  • 32
  • 33
2

You can also make it more informative by distinguishing it to which class it belongs or even by mentioning its output value.

def print_decision_tree(tree, feature_names, offset_unit='    '):    
left      = tree.tree_.children_left
right     = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
    features  = ['f%d'%i for i in tree.tree_.feature]
else:
    features  = [feature_names[i] for i in tree.tree_.feature]        

def recurse(left, right, threshold, features, node, depth=0):
        offset = offset_unit*depth
        if (threshold[node] != -2):
                print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) {")
                if left[node] != -1:
                        recurse (left, right, threshold, features,left[node],depth+1)
                print(offset+"} else {")
                if right[node] != -1:
                        recurse (left, right, threshold, features,right[node],depth+1)
                print(offset+"}")
        else:
                #print(offset,value[node]) 

                #To remove values from node
                temp=str(value[node])
                mid=len(temp)//2
                tempx=[]
                tempy=[]
                cnt=0
                for i in temp:
                    if cnt<=mid:
                        tempx.append(i)
                        cnt+=1
                    else:
                        tempy.append(i)
                        cnt+=1
                val_yes=[]
                val_no=[]
                res=[]
                for j in tempx:
                    if j=="[" or j=="]" or j=="." or j==" ":
                        res.append(j)
                    else:
                        val_no.append(j)
                for j in tempy:
                    if j=="[" or j=="]" or j=="." or j==" ":
                        res.append(j)
                    else:
                        val_yes.append(j)
                val_yes = int("".join(map(str, val_yes)))
                val_no = int("".join(map(str, val_no)))

                if val_yes>val_no:
                    print(offset,'\033[1m',"YES")
                    print('\033[0m')
                elif val_no>val_yes:
                    print(offset,'\033[1m',"NO")
                    print('\033[0m')
                else:
                    print(offset,'\033[1m',"Tie")
                    print('\033[0m')

recurse(left, right, threshold, features, 0,0)

enter image description here

Catarina Ferreira
  • 1,824
  • 5
  • 17
  • 26
Amit Rautray
  • 176
  • 7
2

Here is my approach to extract the decision rules in a form that can be used in directly in sql, so the data can be grouped by node. (Based on the approaches of previous posters.)

The result will be subsequent CASE clauses that can be copied to an sql statement, ex.

SELECT COALESCE(*CASE WHEN <conditions> THEN > <NodeA>*, > *CASE WHEN <conditions> THEN <NodeB>*, > ....)NodeName,* > FROM <table or view>


import numpy as np

import pickle
feature_names=.............
features  = [feature_names[i] for i in range(len(feature_names))]
clf= pickle.loads(trained_model)
impurity=clf.tree_.impurity
importances = clf.feature_importances_
SqlOut=""

#global Conts
global ContsNode
global Path
#Conts=[]#
ContsNode=[]
Path=[]
global Results
Results=[]

def print_decision_tree(tree, feature_names, offset_unit=''    ''):    
    left      = tree.tree_.children_left
    right     = tree.tree_.children_right
    threshold = tree.tree_.threshold
    value = tree.tree_.value

    if feature_names is None:
        features  = [''f%d''%i for i in tree.tree_.feature]
    else:
        features  = [feature_names[i] for i in tree.tree_.feature]        

    def recurse(left, right, threshold, features, node, depth=0,ParentNode=0,IsElse=0):
        global Conts
        global ContsNode
        global Path
        global Results
        global LeftParents
        LeftParents=[]
        global RightParents
        RightParents=[]
        for i in range(len(left)): # This is just to tell you how to create a list.
            LeftParents.append(-1)
            RightParents.append(-1)
            ContsNode.append("")
            Path.append("")


        for i in range(len(left)): # i is node
            if (left[i]==-1 and right[i]==-1):      
                if LeftParents[i]>=0:
                    if Path[LeftParents[i]]>" ":
                        Path[i]=Path[LeftParents[i]]+" AND " +ContsNode[LeftParents[i]]                                 
                    else:
                        Path[i]=ContsNode[LeftParents[i]]                                   
                if RightParents[i]>=0:
                    if Path[RightParents[i]]>" ":
                        Path[i]=Path[RightParents[i]]+" AND not " +ContsNode[RightParents[i]]                                   
                    else:
                        Path[i]=" not " +ContsNode[RightParents[i]]                     
                Results.append(" case when  " +Path[i]+"  then ''" +"{:4d}".format(i)+ " "+"{:2.2f}".format(impurity[i])+" "+Path[i][0:180]+"''")

            else:       
                if LeftParents[i]>=0:
                    if Path[LeftParents[i]]>" ":
                        Path[i]=Path[LeftParents[i]]+" AND " +ContsNode[LeftParents[i]]                                 
                    else:
                        Path[i]=ContsNode[LeftParents[i]]                                   
                if RightParents[i]>=0:
                    if Path[RightParents[i]]>" ":
                        Path[i]=Path[RightParents[i]]+" AND not " +ContsNode[RightParents[i]]                                   
                    else:
                        Path[i]=" not "+ContsNode[RightParents[i]]                      
                if (left[i]!=-1):
                    LeftParents[left[i]]=i
                if (right[i]!=-1):
                    RightParents[right[i]]=i
                ContsNode[i]=   "( "+ features[i] + " <= " + str(threshold[i])   + " ) "

    recurse(left, right, threshold, features, 0,0,0,0)
print_decision_tree(clf,features)
SqlOut=""
for i in range(len(Results)): 
    SqlOut=SqlOut+Results[i]+ " end,"+chr(13)+chr(10)
Cindy Meister
  • 25,071
  • 21
  • 34
  • 43
Gat
  • 21
  • 1
1

Modified Zelazny7's code to fetch SQL from the decision tree.

# SQL from decision tree

def get_lineage(tree, feature_names):
     left      = tree.tree_.children_left
     right     = tree.tree_.children_right
     threshold = tree.tree_.threshold
     features  = [feature_names[i] for i in tree.tree_.feature]
     le='<='               
     g ='>'
     # get ids of child nodes
     idx = np.argwhere(left == -1)[:,0]     

     def recurse(left, right, child, lineage=None):          
          if lineage is None:
               lineage = [child]
          if child in left:
               parent = np.where(left == child)[0].item()
               split = 'l'
          else:
               parent = np.where(right == child)[0].item()
               split = 'r'
          lineage.append((parent, split, threshold[parent], features[parent]))
          if parent == 0:
               lineage.reverse()
               return lineage
          else:
               return recurse(left, right, parent, lineage)
     print 'case '
     for j,child in enumerate(idx):
        clause=' when '
        for node in recurse(left, right, child):
            if len(str(node))<3:
                continue
            i=node
            if i[1]=='l':  sign=le 
            else: sign=g
            clause=clause+i[3]+sign+str(i[2])+' and '
        clause=clause[:-4]+' then '+str(j)
        print clause
     print 'else 99 end as clusters'
Arslán
  • 1,711
  • 2
  • 12
  • 15
1

Writng Rules in .txt file

from sklearn.tree import export_text

r = export_text(clf, feature_names=feature_names)

f = open("Rules_set.txt", "w")
f.write(r)

Text File

Reading Rules from file

file1 = open("Rules_set.txt","r")
data = file1.readlines()
    
dic = {}
first = None

for line in data:
    if( 'class' in line):
        #print(line.index('class'))
        rule = ' and '.join(list(dic.values()))
        rule = rule + ' ' + line[line.index('class'):]
        print(rule.strip())
        
    else:
        for char in line:
            if char.isalpha():
                index = line.index(char)
                if first == None:
                    first = index
                if first == index:
                    dic = {}
                dic[index] = f'({line[index:].strip()})'
                break

Rules

0

Apparently a long time ago somebody already decided to try to add the following function to the official scikit's tree export functions (which basically only supports export_graphviz)

def export_dict(tree, feature_names=None, max_depth=None) :
    """Export a decision tree in dict format.

Here is his full commit:

https://github.com/scikit-learn/scikit-learn/blob/79bdc8f711d0af225ed6be9fdb708cea9f98a910/sklearn/tree/export.py

Not exactly sure what happened to this comment. But you could also try to use that function.

I think this warrants a serious documentation request to the good people of scikit-learn to properly document the sklearn.tree.Tree API which is the underlying tree structure that DecisionTreeClassifier exposes as its attribute tree_.

Yunus King
  • 1,141
  • 1
  • 11
  • 23
0

Just use the function from sklearn.tree like this

from sklearn.tree import export_graphviz
    export_graphviz(tree,
                out_file = "tree.dot",
                feature_names = tree.columns) //or just ["petal length", "petal width"]

And then look in your project folder for the file tree.dot, copy the ALL the content and paste it here http://www.webgraphviz.com/ and generate your graph :)

chainstair
  • 681
  • 8
  • 18
0

Thank for the wonderful solution of @paulkerfeld. On top of his solution, for all those who want to have a serialized version of trees, just use tree.threshold, tree.children_left, tree.children_right, tree.feature and tree.value. Since the leaves don't have splits and hence no feature names and children, their placeholder in tree.feature and tree.children_*** are _tree.TREE_UNDEFINED and _tree.TREE_LEAF. Every split is assigned a unique index by depth first search.
Notice that the tree.value is of shape [n, 1, 1]

Max Wong
  • 694
  • 10
  • 18
0

Here is a function that generates Python code from a decision tree by converting the output of export_text:

import string
from sklearn.tree import export_text

def export_py_code(tree, feature_names, max_depth=100, spacing=4):
    if spacing < 2:
        raise ValueError('spacing must be > 1')

    # Clean up feature names (for correctness)
    nums = string.digits
    alnums = string.ascii_letters + nums
    clean = lambda s: ''.join(c if c in alnums else '_' for c in s)
    features = [clean(x) for x in feature_names]
    features = ['_'+x if x[0] in nums else x for x in features if x]
    if len(set(features)) != len(feature_names):
        raise ValueError('invalid feature names')

    # First: export tree to text
    res = export_text(tree, feature_names=features, 
                        max_depth=max_depth,
                        decimals=6,
                        spacing=spacing-1)

    # Second: generate Python code from the text
    skip, dash = ' '*spacing, '-'*(spacing-1)
    code = 'def decision_tree({}):\n'.format(', '.join(features))
    for line in repr(tree).split('\n'):
        code += skip + "# " + line + '\n'
    for line in res.split('\n'):
        line = line.rstrip().replace('|',' ')
        if '<' in line or '>' in line:
            line, val = line.rsplit(maxsplit=1)
            line = line.replace(' ' + dash, 'if')
            line = '{} {:g}:'.format(line, float(val))
        else:
            line = line.replace(' {} class:'.format(dash), 'return')
        code += skip + line + '\n'

    return code

Sample usage:

res = export_py_code(tree, feature_names=names, spacing=4)
print (res)

Sample output:

def decision_tree(f1, f2, f3):
    # DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,
    #                        max_features=None, max_leaf_nodes=None,
    #                        min_impurity_decrease=0.0, min_impurity_split=None,
    #                        min_samples_leaf=1, min_samples_split=2,
    #                        min_weight_fraction_leaf=0.0, presort=False,
    #                        random_state=42, splitter='best')
    if f1 <= 12.5:
        if f2 <= 17.5:
            if f1 <= 10.5:
                return 2
            if f1 > 10.5:
                return 3
        if f2 > 17.5:
            if f2 <= 22.5:
                return 1
            if f2 > 22.5:
                return 1
    if f1 > 12.5:
        if f1 <= 17.5:
            if f3 <= 23.5:
                return 2
            if f3 > 23.5:
                return 3
        if f1 > 17.5:
            if f1 <= 25:
                return 1
            if f1 > 25:
                return 2

The above example is generated with names = ['f'+str(j+1) for j in range(NUM_FEATURES)].

One handy feature is that it can generate smaller file size with reduced spacing. Just set spacing=2.

Andriy Makukha
  • 7,580
  • 1
  • 38
  • 49
0

From this answer, you get a readable and efficient representation: https://stackoverflow.com/a/65939892/3746632

Output looks like this. X is 1d vector to represent a single instance's features.

from numba import jit,njit
@njit
def predict(X):
    ret = 0
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            ret += 1
    else:  # if w_pizza > 0.5
        pass
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        ret += 1
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                ret += 1
        else:  # if w_mexico > 0.5
            ret += 1
    else:  # if w_pizza > 0.5
        pass
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                ret += 1
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        ret += 1
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        pass
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            ret += 1
    else:  # if w_pizza > 0.5
        ret += 1
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        ret += 1
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        pass
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        pass
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        pass
    return ret/10
ldmtwo
  • 419
  • 5
  • 14
0

I found the methods used here: https://mljar.com/blog/extract-rules-decision-tree/ is pretty good, can generate human readable rule set directly, which allows you to filter rules too

Cherry Wu
  • 3,844
  • 9
  • 43
  • 63