Your strings are returning the same hash codes for the same strings correctly because string.GetHashCode()
is implemented that way.
The implementation of int[].GetHashCode()
does something with its memory address to return the hash code, so arrays with identical contents will nevertheless return different hash codes.
So that's why your arrays with identical contents are returning different hash codes.
Rather than using an array directly as a key, you should consider writing a wrapper class for an array that will provide a proper hash code.
The main disadvantage with this is that it will be an O(N) operation to compute the hash code (it has to be - otherwise it wouldn't represent all the data in the array).
Fortunately you can cache the hash code so it's only computed once.
Another major problem with using a mutable array for a hash code is that if you change the contents of the array after using it for the key of a hashing container such as Dictionary, you will break the container.
Ideally you would only use this kind of hashing for arrays that are never changed.
Bearing all that in mind, a simple wrapper would look like this:
public sealed class IntArrayKey
{
public IntArrayKey(int[] array)
{
Array = array;
_hashCode = hashCode();
}
public int[] Array { get; }
public override int GetHashCode()
{
return _hashCode;
}
int hashCode()
{
int result = 17;
unchecked
{
foreach (var i in Array)
{
result = result * 23 + i;
}
}
return result;
}
readonly int _hashCode;
}
You can use that in place of the actual arrays for more sensible hash code generation.
As per the comments below, here's a version of the class that:
- Makes a defensive copy of the array so that it cannot be modified.
- Implements equality operators.
- Exposes the underlying array as a read-only list, so callers can access its contents but cannot break its hash code.
Code:
public sealed class IntArrayKey: IEquatable<IntArrayKey>
{
public IntArrayKey(IEnumerable<int> sequence)
{
_array = sequence.ToArray();
_hashCode = hashCode();
Array = new ReadOnlyCollection<int>(_array);
}
public bool Equals(IntArrayKey other)
{
if (other is null)
return false;
if (ReferenceEquals(this, other))
return true;
return _hashCode == other._hashCode && equals(other.Array);
}
public override bool Equals(object obj)
{
return ReferenceEquals(this, obj) || obj is IntArrayKey other && Equals(other);
}
public static bool operator == (IntArrayKey left, IntArrayKey right)
{
return Equals(left, right);
}
public static bool operator != (IntArrayKey left, IntArrayKey right)
{
return !Equals(left, right);
}
public IReadOnlyList<int> Array { get; }
public override int GetHashCode()
{
return _hashCode;
}
bool equals(IReadOnlyList<int> other) // other cannot be null.
{
if (_array.Length != other.Count)
return false;
for (int i = 0; i < _array.Length; ++i)
if (_array[i] != other[i])
return false;
return true;
}
int hashCode()
{
int result = 17;
unchecked
{
foreach (var i in _array)
{
result = result * 23 + i;
}
}
return result;
}
readonly int _hashCode;
readonly int[] _array;
}
If you wanted to use the above class without the overhead of making a defensive copy of the array, you can change the constructor to:
public IntArrayKey(int[] array)
{
_array = array;
_hashCode = hashCode();
Array = new ReadOnlyCollection<int>(_array);
}