Data for reproduction:
import xarray as xa
array = np.array([[[0.061686, 0.434164],
[0.642003, 0.78744 ],
[0.068701, 0.526546]],
[[0.53612 , 0.549919],
[0.172044, 0.118106],
[0.381638, 0.736584]],
[[0.688589, 0.173351],
[0.03593 , 0.833743],
[0.667719, 0.890957]],
[[0.712785, 0.04725 ],
[0.132689, 0.938043],
[0.681481, 0.67986 ]]])
lat = ['IA','IL','IN']
lon = ['00','22']
times = pd.date_range('2000-01-01', periods=4, freq='H') #Hours
foo = xr.DataArray(array, coords=[times, lat, lon], dims=['time', 'lat', 'lon'])
The function you need:
from scipy import stats
import numpy as np
def func(x, axis, score):
out = np.apply_along_axis(stats.percentileofscore, axis, x, *[score])
return out
res = foo.resample(time='2H').reduce(func, **{'score':0.2}) #Each 2 hours
The output:
<xarray.DataArray (time: 2, lat: 3, lon: 2)>
array([[[ 50., 0.],
[ 50., 50.],
[ 50., 0.]],
[[ 0., 100.],
[100., 0.],
[ 0., 0.]]])
Coordinates:
* time (time) datetime64[ns] 2000-01-01 2000-01-01T02:00:00
* lat (lat) <U2 'IA' 'IL' 'IN'
* lon (lon) <U2 '00' '22'
Explanation
What the function expects and its output:
def func2(x, axis): #Expect a function with axis argument (error reason)
print(x) #to see the output that our function receive as input
return x #not relevant
foo.resample(time='2H').reduce(func2)
#Input of our func2 (two new arrays with shape (2,3,2))
a = np.array([[[0.061686, 0.434164],
[0.642003, 0.78744 ],
[0.068701, 0.526546]],
[[0.53612, 0.549919],
[0.172044, 0.118106],
[0.381638, 0.736584]]])
b = np.array([[[0.688589, 0.173351],
[0.03593, 0.833743],
[0.667719, 0.890957]],
[[0.712785, 0.04725 ],
[0.132689, 0.938043],
[0.681481, 0.67986 ]]])
So, what you are doing is:
stats.percentileofscore(a, score=0.2) #200 #Reduce over lon and lat
stats.percentileofscore(b, score=0.2) #200 #This raise another error
This is the reason why you need a function that operates through axis (ex. np.mean(a, axis=None, ...)
) np.apply_along_axis
help us with this task:
#reduce through hours 1-2 and hours 3-4 (axis=0)
np.apply_along_axis(stats.percentileofscore, 0, a, **{'score':0.2})
np.apply_along_axis(stats.percentileofscore, 0, b, **{'score':0.2})