You can use numpy.count_nonzero
here.
pd.Series(np.count_nonzero(df.to_numpy()=='?', axis=0), index=df.columns)
# pd.Series((df.values == '?').sum(0), index=df.columns)
colA 2
colB 1
colC 1
dtype: int64
Timeit results:
Benchmarking with df
of shape (1_000_000, 3)
big_df = pd.DataFrame(df.to_numpy().repeat(200_000,axis=0))
big_df.shape
(1000000, 3)
In [186]: %timeit pd.Series(np.count_nonzero(big_df.to_numpy()=='?', axis=0), index=big_df.columns)
53.1 ms ± 231 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [187]: %timeit big_df.eq('?').sum()
171 ms ± 7.42 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [188]: %timeit big_df[big_df == '?'].count()
314 ms ± 4.24 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [189]: %timeit pd.Series(np.apply_along_axis(lambda x: Counter(x)['?'], 0, big_df.values), index=big_df.columns)
174 ms ± 3.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)