Further to your positive comment regarding plotly, here is an example of how to achieve a multi-xaxis for your dataset.
The code is a lot simpler than it looks. The code appears 'lengthy' due to the way I've formatted the dict
s for easier reading.
The key elements are:
- Adding a cumulative sum of the
time
column (time_c
) for use on xaxis2
.
- Adding a hidden trace which aligns to
xaxis
, and your time data which aligns to xaxis2
. Without the hidden trace, either both axes do not appear, or they appear but are not aligned, due to only one trace being plotted.
(Updated) Sample Code:
The following code has been updated to address the issue OP was having with a larger (70k row) dataset.
The key change is an update to the layout['xaxis']
and layout['xaxis2']
dicts to contain 'type': 'category'
, 'nticks'
and defined 'range'
keys.
import pandas as pd
from plotly.offline import plot
# Create the dataset.
raw_data = {'time': [21.9235, 4.17876, 4.02168, 3.81504, 4.2972],
'tpu': [33.3, 33.3, 33.3, 33.3, 33.3],
'cpu': [32, 32, 32, 32, 32],
'memused': [435.92, 435.90, 436.02, 436.02, 436.19]}
df = pd.DataFrame(raw_data)
df['time_c'] = df['time'].cumsum().round(2)
# Plotting code.
data = []
layout = {'margin': {'t': 105},
'title': {'text': 'Example Showing use of Secondary X-Axis',
'y': 0.97}}
# Create a (hidden) trace for the xaxis.
data.append({'x': df.index,
'y': df['memused'],
'showlegend': False,
'mode': 'markers',
'marker': {'size': 0.001}})
# Create the visible trace for xaxis2.
data.append({'x': df['time_c'],
'y': df['memused'],
'xaxis': 'x2',
'name': 'Inference'})
# Configure graph layout.
nticks = int(df.shape[0] // (df.shape[0] * 0.05))
layout['xaxis'] = {'title': 'Number of Inferences',
'nticks': nticks,
'range': [df.index.min(), df.index.max()],
'tickangle': 45,
'type': 'category'}
layout['xaxis2'] = {'title': 'Time(ms)',
'nticks': nticks,
'overlaying': 'x1',
'range': [df['time_c'].min(), df['time_c'].max()],
'side': 'top',
'tickangle': 45,
'type': 'category'}
layout['yaxis'] = {'title': 'Memory Used (MB)'}
fig = {'data': data, 'layout': layout}
plot(fig, filename='/path/to/graph.html')
Example Graph (original dataset):
I've intentionally left out any additional appear configuration for code simplicity. However, referring to the top level plotly docs, the graphs are highly configurable.

Example Graph (new dataset):
This graph uses the (larger, 70k row) synthesised dataset from the other answer.
