I use tensorflow's Dataset such that y
is a dictionary of 6 tensors which I all use in a single loss function which looks likes this:
def CustomLoss():
def custom_loss(y_true, y_pred):
a = tf.keras.losses.binary_crossentropy(y_true['a_0'], y_pred[0]) * y_true['a_1']
b = tf.square(y_true['b_0'] - y_pred[1]) * y_true['b_1']
c = tf.abs(y_true['c_0'] - y_pred[2]) * y_true['c_1']
return a + b + c
return custom_loss
And I have a model with 3 outputs of different shapes. When I compile the model and call fit
method I get Value Error
model.compile(optimizer=optimizer, loss=CustomLoss())
model.fit(dataset, epochs=10)
ValueError: Found unexpected keys that do not correspond to any
Model output: dict_keys(['a_0', 'a_1', 'b_0', 'b_1', 'c_0', 'c_1']).
Expected: ['output_0', 'output_1', 'output_2']
where output_0, 'output_1', 'output_2'
are names of the output layers.
I figured that naming the output layers by the keys in the dataset should solve the issue but the problem is I have 6 tensors in the dataset and only 3 outputs. I'm aware I can assign a loss function to every output with a single dataset ground truth tensor, but again I need to pass at least two tensors as GT.
So far I've used a custom training loop but I'd rather use the fit
method. I'm using tensorflow 2.3.1
EDIT:
Example model:
inputs = x = tf.keras.layers.Input((256, 256, 3))
x = tf.keras.applications.ResNet50(include_top=False, weights=None)(x)
x1 = tf.keras.layers.Flatten()(x)
x1 = tf.keras.layers.Dense(2, name='output_1')(x1)
x2 = tf.keras.layers.Conv2D(256, 1, name='output_2')(x)
x3 = tf.keras.layers.Flatten()(x)
x3 = tf.keras.layers.Dense(64, name='output_3')(x3)
model = tf.keras.Model(inputs=inputs, outputs=[x1, x2, x3])
Custom training loop:
avg_loss = tf.keras.metrics.Mean('loss', dtype=tf.float32)
for epoch in range(1, epochs+1):
for batch, (images, labels) in enumerate(train_dataset):
with tf.GradientTape() as tape:
outputs = model(images, training=False)
reg_loss = tf.reduce_sum(model.losses)
pred_loss = loss(labels, outputs)
total_loss = tf.reduce_sum(pred_loss) + reg_loss
grads = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
avg_loss.update_state(total_loss)
print(f'Epoch {epoch}/{epochs} - Loss: {avg_loss.result().numpy()}')
avg_loss.reset_states()
Minimal reproducible code:
import tensorflow as tf
def CustomLoss():
def custom_loss(y_true, y_pred):
a = tf.keras.losses.binary_crossentropy(y_true['a_0'], y_pred[0]) * y_true['a_1']
b = tf.square(y_true['b_0'] - y_pred[1]) * y_true['b_1']
b = tf.reduce_sum(b, axis=(1, 2, 3))
c = tf.abs(y_true['c_0'] - y_pred[2]) * y_true['c_1']
c = tf.reduce_sum(c, axis=1)
return a + b + c
return custom_loss
dataset = tf.data.Dataset.from_tensors((
tf.random.uniform((256, 256, 3)),
{'a_0': [0., 1.], 'a_1': [1.], 'b_0': tf.random.uniform((8, 8, 256)), 'b_1': [1.], 'c_0': tf.random.uniform((64,)), 'c_1': [1.]}
))
dataset = dataset.batch(1)
inputs = x = tf.keras.layers.Input((256, 256, 3))
x = tf.keras.applications.ResNet50(include_top=False, weights=None)(x)
x1 = tf.keras.layers.Flatten()(x)
x1 = tf.keras.layers.Dense(2, name='output_1')(x1)
x2 = tf.keras.layers.Conv2D(256, 1, name='output_2')(x)
x3 = tf.keras.layers.Flatten()(x)
x3 = tf.keras.layers.Dense(64, name='output_3')(x3)
model = tf.keras.Model(inputs=inputs, outputs=[x1, x2, x3])
optimizer = tf.keras.optimizers.Adam(1e-3)
model.compile(optimizer=optimizer, loss=CustomLoss())
model.fit(dataset, epochs=1)