I have been looking to add support for this to pam_cap.so
, and found this question. As @EmployedRussian notes in a follow-up to their own post, the accepted answer stopped working at some point. It took a while to figure out how to make this work again, so here is a worked example.
This worked example involves 5 files to show how things work with some corresponding tests.
First, consider this trivial program (call it empty.c
):
int main(int argc, char **argv) { return 0; }
Compiling it, we can see how it resolves the dynamic symbols on my system as follows:
$ gcc -o empty empty.c
$ objcopy --dump-section .interp=/dev/stdout empty ; echo
/lib64/ld-linux-x86-64.so.2
$ DL_LOADER=/lib64/ld-linux-x86-64.so.2
That last line sets a shell variable for use later.
Here are the two files that build my example shared library:
/* multi.h */
void multi_main(void);
void multi(const char *caller);
and
/* multi.c */
#include <stdio.h>
#include <stdlib.h>
#include "multi.h"
void multi(const char *caller) {
printf("called from %s\n", caller);
}
__attribute__((force_align_arg_pointer))
void multi_main(void) {
multi(__FILE__);
exit(42);
}
const char dl_loader[] __attribute__((section(".interp"))) =
DL_LOADER ;
(Update 2021-11-13: The forced alignment is to help __i386__
code be SSE compatible - without it we get hard to debug glibc
SIGSEGV
crashes.)
We can compile and run it as follows:
$ gcc -fPIC -shared -o multi.so -DDL_LOADER="\"${DL_LOADER}\"" multi.c -Wl,-e,multi_main
$ ./multi.so
called from multi.c
$ echo $?
42
So, this is a .so
that can be executed as a stand alone binary. Next, we validate that it can be loaded as shared object.
/* opener.c */
#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv) {
void *handle = dlopen("./multi.so", RTLD_NOW);
if (handle == NULL) {
perror("no multi.so load");
exit(1);
}
void (*multi)(const char *) = dlsym(handle, "multi");
multi(__FILE__);
}
That is we dynamically load the shared-object and run a function from it:
$ gcc -o opener opener.c -ldl
$ ./opener
called from opener.c
Finally, we link against this shared object:
/* main.c */
#include "multi.h"
int main(int argc, char **argv) {
multi(__FILE__);
}
Where we compile and run it as follows:
$ gcc main.c -o main multi.so
$ LD_LIBRARY_PATH=./ ./main
called from main.c
(Note, because multi.so
isn't in a standard system library location, we need to override where the runtime looks for the shared object file with the LD_LIBRARY_PATH
environment variable.)