I'm trying to make a piecewise linear fit consisting of 3 pieces whereof the first and last pieces are constant. As you can see in this figure
don't get the expected fit, since the fit doesn't capture the 3 linear pieces clearly visual from the original data points.
I've tried following this question and expanded it to the case of 3 pieces with the two constant pieces, but I must have done something wrong.
Here is my code:
from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams['figure.figsize'] = [16, 6]
x = np.arange(0, 50, dtype=float)
y = np.array([50 for i in range(10)]
+ [50 - (50-5)/31 * i for i in range(1, 31)]
+ [5 for i in range(10)],
dtype=float)
def piecewise_linear(x, x0, y0, x1, y1):
return np.piecewise(x,
[x < x0, (x >= x0) & (x < x1), x >= x1],
[lambda x:y0, lambda x:(y1-y0)/(x1-x0)*(x-x0)+y0, lambda x:y1])
p , e = optimize.curve_fit(piecewise_linear, x, y)
xd = np.linspace(0, 50, 101)
plt.plot(x, y, "o", label='original data')
plt.plot(xd, piecewise_linear(xd, *p), label='piecewise linear fit')
plt.legend()
The accepted answer to the previous mentioned question suggest looking at segments_fit.ipynb for the case of N parts, but following that it doesn't seem that I can specify, that the first and last pieces should be constant.
Furthermore I do get the following warning:
OptimizeWarning: Covariance of the parameters could not be estimated
What do I do wrong?