3

I have a TensorFlow Keras deep learning model in the form of an h5 file.

How can I upload an image and return a NumPy array in FastAPI?

import numpy as np
import cv2
from fastapi import FastAPI, File, UploadFile
import numpy as np
from tensorflow.keras.models import load_model
import tensorflow as tf

model=load_model("complete_model.h5")
app = FastAPI()

def prepare(image):
    IMG_SIZE = 224
    new_array = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
    return new_array.reshape(-1, IMG_SIZE,IMG_SIZE,3)

@app.post("/")
async def root(file: UploadFile = File(...)):
    global model
    content = await file.read()
    nparr = np.fromstring(content, np.uint8)
    img = cv2.imdecode(nparr, cv2.IMREAD_COLOR).astype(np.float32)
    prediction = model.predict(prepare(img))
    return prediction

When uploading the image using Swagger UI, I get the following error:

line 137, in jsonable_encoder
data = dict(obj)
TypeError: 'numpy.float32' object is not iterable

Working code without FastAPI:

import numpy as np
import numpy as np
from tensorflow.keras.models import load_model
import tensorflow as tf
import cv2

model=load_model("complete_model.h5")

def prepare(image):
    IMG_SIZE = 224
    new_array = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
    return new_array.reshape(-1, IMG_SIZE,IMG_SIZE,3)

img = cv2.imread("./test.jpeg").astype(np.float32)
prediction = model.predict(prepare(img))
print(prediction)

Result in the terminal:

[[0.25442022 0.74557984]]

How can I get the same result while using FastAPI?

Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
Radon333
  • 92
  • 1
  • 9
  • It doesn't, just shows this ERROR: Exception in ASGI application Traceback (most recent call last): File "c:\users\ranveer\anaconda3\envs\tfjs\lib\site-packages\fastapi\encoders.py", line 137, in jsonable_encoder data = dict(obj) TypeError: 'numpy.float32' object is not iterable During the handling of the above exception, another exception occurred: Traceback (most recent call last): File "c:\users\ranveer\anaconda3\envs\tfjs\lib\site-packages\fastapi\encoders.py", line 141, in jsonable_encoder data = vars(obj) TypeError: vars() argument must have __dict__ attribute – Radon333 Feb 13 '22 at 17:58

1 Answers1

3

The error is thrown when returning the response (i.e., prediction in your case) from your endpoint. It looks like FastAPI is trying to convert the NumPy array into a dict, using the jsonable_encoder, which is used internally by FastAPI when returning a value from an endpoint, and which seems to call Python's vars() method, as shown in the error you provided here (have a look at the discussion here, as well as the documentation). Thus, what you could do is to convert the NumPy array into a Python list and then serialise it into a JSON object:

return json.dumps(prediction.tolist())

On OpenAPI (Swagger UI), you will still be able to see the expected result. However, if you need to convert it back to a NumPy array, you can parse the JSON string as shown below.

arr = np.asarray(json.loads(resp.json()))  # resp.json() if using Python requests

If you would like to return the NumPy array as raw bytes and display the image in the browser or download it, have a look at this answer.

Chris
  • 18,724
  • 6
  • 46
  • 80