The answers of Lindydancer and 6502 explain why (on some machines) it happens to be a 1
that is being printed (although the behavior of the operation is undefined). I am adding the details in case they aren't obvious.
I am assuming that (like me) you are running the program on an Intel processor. GCC generates these assembly instructions for the shift operation:
movl $32, %ecx
sall %cl, %eax
On the topic of sall
and other shift operations, page 624 in the Instruction Set Reference Manual says:
The 8086 does not mask the shift count. However, all other Intel Architecture processors
(starting with the Intel 286 processor) do mask the shift count to five bits, resulting in a
maximum count of 31. This masking is done in all operating modes (including the virtual-8086
mode) to reduce the maximum execution time of the instructions.
Since the lower 5 bits of 32 are zero, then 1 << 32
is equivalent to 1 << 0
, which is 1
.
Experimenting with larger numbers, we would predict that
cout << (a << 32) << " " << (a << 33) << " " << (a << 34) << "\n";
would print 1 2 4
, and indeed that is what is happening on my machine.