I wanted to verify Xiaoning Bian's answer, but unfortunately he didn't post his code. So I implemented a little test suite and ran different little hashing functions on the list of 466K English words to see number of collisions for each:
Hash function | Collisions | Time (words) | Time (file)
=================================================================
CRC32 | 23 (0.005%) | 112 ms | 38 ms
MurmurOAAT | 26 (0.006%) | 86 ms | 10 ms
FNV hash | 32 (0.007%) | 87 ms | 7 ms
Jenkins OAAT | 36 (0.008%) | 90 ms | 8 ms
DJB2 hash | 344 (0.074%) | 87 ms | 5 ms
K&R V2 | 356 (0.076%) | 86 ms | 5 ms
Coffin | 763 (0.164%) | 86 ms | 4 ms
x17 hash | 2242 (0.481%) | 87 ms | 7 ms
-----------------------------------------------------------------
MurmurHash3_x86_32 | 19 (0.004%) | 90 ms | 3 ms
I included time for both: hashing all words individually and hashing the entire file of all English words once. I also included a more complex MurmurHash3_x86_32
into my test for reference.
Conclusion:
- there is almost no point of using the popular DJB2 hash function for strings on Intel x86-64 (or AArch64 for that matter) architecture. Because it has much more collisions than similar functions (MurmurOAAT, FNV and Jenkins OAAT) while having very similar throughput. Bernstein's DJB2 performs especially bad on short strings. Example collisions:
Liz
/MHz
, Bon
/COM
, Rey
/SEX
.
Test code:
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#define MAXLINE 2048
#define SEED 0x12345678
uint32_t DJB2_hash(const uint8_t *str)
{
uint32_t hash = 5381;
uint8_t c;
while ((c = *str++))
hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
return hash;
}
uint32_t FNV(const void* key, int len, uint32_t h)
{
// Source: https://github.com/aappleby/smhasher/blob/master/src/Hashes.cpp
h ^= 2166136261UL;
const uint8_t* data = (const uint8_t*)key;
for(int i = 0; i < len; i++)
{
h ^= data[i];
h *= 16777619;
}
return h;
}
uint32_t MurmurOAAT_32(const char* str, uint32_t h)
{
// One-byte-at-a-time hash based on Murmur's mix
// Source: https://github.com/aappleby/smhasher/blob/master/src/Hashes.cpp
for (; *str; ++str) {
h ^= *str;
h *= 0x5bd1e995;
h ^= h >> 15;
}
return h;
}
uint32_t KR_v2_hash(const char *s)
{
// Source: https://stackoverflow.com/a/45641002/5407270
// a.k.a. Java String hashCode()
uint32_t hashval = 0;
for (hashval = 0; *s != '\0'; s++)
hashval = *s + 31*hashval;
return hashval;
}
uint32_t Jenkins_one_at_a_time_hash(const char *str, size_t len)
{
uint32_t hash, i;
for(hash = i = 0; i < len; ++i)
{
hash += str[i];
hash += (hash << 10);
hash ^= (hash >> 6);
}
hash += (hash << 3);
hash ^= (hash >> 11);
hash += (hash << 15);
return hash;
}
uint32_t crc32b(const uint8_t *str) {
// Source: https://stackoverflow.com/a/21001712
unsigned int byte, crc, mask;
int i = 0, j;
crc = 0xFFFFFFFF;
while (str[i] != 0) {
byte = str[i];
crc = crc ^ byte;
for (j = 7; j >= 0; j--) {
mask = -(crc & 1);
crc = (crc >> 1) ^ (0xEDB88320 & mask);
}
i = i + 1;
}
return ~crc;
}
inline uint32_t _rotl32(uint32_t x, int32_t bits)
{
return x<<bits | x>>(32-bits); // C idiom: will be optimized to a single operation
}
uint32_t Coffin_hash(char const *input) {
// Source: https://stackoverflow.com/a/7666668/5407270
uint32_t result = 0x55555555;
while (*input) {
result ^= *input++;
result = _rotl32(result, 5);
}
return result;
}
uint32_t x17(const void * key, int len, uint32_t h)
{
// Source: https://github.com/aappleby/smhasher/blob/master/src/Hashes.cpp
const uint8_t * data = (const uint8_t*)key;
for (int i = 0; i < len; ++i)
{
h = 17 * h + (data[i] - ' ');
}
return h ^ (h >> 16);
}
uint32_t apply_hash(int hash, const char* line)
{
switch (hash) {
case 1: return crc32b((const uint8_t*)line);
case 2: return MurmurOAAT_32(line, SEED);
case 3: return FNV(line, strlen(line), SEED);
case 4: return Jenkins_one_at_a_time_hash(line, strlen(line));
case 5: return DJB2_hash((const uint8_t*)line);
case 6: return KR_v2_hash(line);
case 7: return Coffin_hash(line);
case 8: return x17(line, strlen(line), SEED);
default: break;
}
return 0;
}
int main(int argc, char* argv[])
{
// Read arguments
const int hash_choice = atoi(argv[1]);
char const* const fn = argv[2];
// Read file
FILE* f = fopen(fn, "r");
// Read file line by line, calculate hash
char line[MAXLINE];
while (fgets(line, sizeof(line), f)) {
line[strcspn(line, "\n")] = '\0'; // strip newline
uint32_t hash = apply_hash(hash_choice, line);
printf("%08x\n", hash);
}
fclose(f);
return 0;
}
P.S. A more comprehensive review of speed and quality of modern hash functions can be found in SMHasher repository of Reini Urban (rurban). Notice the "Quality problems" column in the table.