Unfortunately, you have not updated your question yet, so it still is not exactly clear what you are asking. E.g. you talk about an intersection (which should search for values that exist in every single array), but from the (not working) code it seems you are simply searching for duplicates in any of the arrays.
Although Mason's answer points to an obvious general solution for these kind of algorithms, I believe it is somewhat different for such a multi-dimensional array. I worked out two routines for determination of (1) the intersection as well as (2) the duplicates. Both assume unordered content of unequal length in the arrays.
First, I decided to introduce some new types:
type
PChain = ^TChain;
TChain = array of Integer;
TChains = array of TChain;
Secondly, both routines need some sorting mechanism. A very quick but dirty one is done by employing/misusing a TList
:
function CompareInteger(Item1, Item2: Pointer): Integer;
begin
Result := Integer(Item1) - Integer(Item2);
end;
procedure SortChain(var Chain: TChain);
var
List: TList;
begin
List := TList.Create;
try
List.Count := Length(Chain);
Move(Chain[0], List.List[0], List.Count * SizeOf(Integer));
List.Sort(CompareInteger);
Move(List.List[0], Chain[0], List.Count * SizeOf(Integer));
finally
List.Free;
end;
end;
But a much nicer implementation is gotten by adjusting the RTL code from Classes.QuickSort
, which does exactly the same as the one above, without copying the array (twice):
procedure SortChain(Chain: PChain; L, R: Integer);
var
I: Integer;
J: Integer;
Value: Integer;
Temp: Integer;
begin
repeat
I := L;
J := R;
Value := Chain^[(L + R) shr 1];
repeat
while Chain^[I] < Value do
Inc(I);
while Chain^[J] > Value do
Dec(J);
if I <= J then
begin
Temp := Chain^[I];
Chain^[I] := Chain^[J];
Chain^[J] := Temp;
Inc(I);
Dec(J);
end;
until I > J;
if L < J then
SortChain(Chain, L, J);
L := I;
until I >= R;
end;
Intersection:
To obtain the intersection of all arrays, comparing all values in the shortest array with the values in all other arrays is enough. Because the shortest array may contain duplicate values, that small array is sorted in order to be able to ignore the duplicates. From that point it is simply a matter of finding (or rather nót finding) a same value in one of the other arrays. Sorting all other arrays is not necessary, because the chance to find a value at an earlier position than within a sorted array is 50%.
function GetChainsIntersection(const Chains: TChains): TChain;
var
IShortest: Integer;
I: Integer;
J: Integer;
K: Integer;
Value: Integer;
Found: Boolean;
FindCount: Integer;
begin
// Determine which of the chains is the shortest
IShortest := 0;
for I := 1 to Length(Chains) - 1 do
if Length(Chains[I]) < Length(Chains[IShortest]) then
IShortest := I;
// The length of result will at maximum be the length of the shortest chain
SetLength(Result, Length(Chains[IShortest]));
Value := 0;
FindCount := 0;
// Find for every value in the shortest chain...
SortChain(@Chains[IShortest], 0, Length(Chains[IShortest]) - 1);
for K := 0 to Length(Chains[IShortest]) - 1 do
begin
if (K > 0) and (Chains[IShortest, K] = Value) then
Continue;
Value := Chains[IShortest, K];
Found := False;
for I := 0 to Length(Chains) - 1 do
if I <> IShortest then
begin
Found := False;
for J := 0 to Length(Chains[I]) - 1 do
// ... the same value in other chains
if Chains[I, J] = Value then
begin
Found := True;
Break;
end;
if not Found then
Break;
end;
// Add a found value to the result
if Found then
begin
Result[FindCount] := Value;
Inc(FindCount);
end;
end;
// Truncate the length of result to the actual number of found values
SetLength(Result, FindCount);
end;
Duplicates:
This also does not require sorting all arrays individually. All values are copied into a one-dimensional temporary array. After sorting thát array, it is easy to find the duplicates.
function GetDuplicateShackles(const Chains: TChains): TChain;
var
Count: Integer;
I: Integer;
Temp: TChain;
PrevValue: Integer;
begin
// Foresee no result
SetLength(Result, 0);
// Count the total number of values
Count := 0;
for I := 0 to Length(Chains) - 1 do
Inc(Count, Length(Chains[I]));
if Count > 0 then
begin
// Copy all values to a temporary chain...
SetLength(Temp, Count);
Count := 0;
for I := 0 to Length(Chains) - 1 do
begin
Move(Chains[I][0], Temp[Count], Length(Chains[I]) * SizeOf(Integer));
Inc(Count, Length(Chains[I]));
end;
// Sort the temporary chain
SortChain(@Temp, 0, Count - 1);
// Find all duplicate values in the temporary chain
SetLength(Result, Count);
Count := 0;
PrevValue := Temp[0];
for I := 1 to Length(Temp) - 1 do
begin
if (Temp[I] = PrevValue) and
((Count = 0) or (Temp[I] <> Result[Count - 1])) then
begin
Result[Count] := PrevValue;
Inc(Count);
end;
PrevValue := Temp[I];
end;
SetLength(Result, Count);
end;
end;
Sample application:
And because I like to test all my code, it needed very little work to make it somewhat representative.
unit Unit1;
interface
uses
SysUtils, Classes, Controls, Forms, StdCtrls, Grids;
type
PChain = ^TChain;
TChain = array of Integer;
TChains = array of TChain;
TForm1 = class(TForm)
Grid: TStringGrid;
IntersectionFullButton: TButton;
IntersectionPartialButton: TButton;
DuplicatesFullButton: TButton;
DuplicatesPartialButton: TButton;
Memo: TMemo;
procedure FormCreate(Sender: TObject);
procedure IntersectionButtonClick(Sender: TObject);
procedure DuplicatesButtonClick(Sender: TObject);
private
procedure ClearGrid;
procedure ShowChains(const Chains: TChains);
procedure ShowChain(const Chain: TChain; const Title: String);
end;
var
Form1: TForm1;
implementation
{$R *.dfm}
const
MaxDepth = 20;
procedure FillChains(var Chains: TChains; FillUp: Boolean; MaxValue: Integer);
var
X: Integer;
Y: Integer;
Depth: Integer;
begin
SetLength(Chains, MaxDepth);
for X := 0 to MaxDepth - 1 do
begin
if FillUp then
Depth := MaxDepth
else
Depth := Random(MaxDepth - 2) + 3; // Minimum depth = 3
SetLength(Chains[X], Depth);
for Y := 0 to Depth - 1 do
Chains[X, Y] := Random(MaxValue);
end;
end;
procedure SortChain(Chain: PChain; L, R: Integer);
var
I: Integer;
J: Integer;
Value: Integer;
Temp: Integer;
begin
repeat
I := L;
J := R;
Value := Chain^[(L + R) shr 1];
repeat
while Chain^[I] < Value do
Inc(I);
while Chain^[J] > Value do
Dec(J);
if I <= J then
begin
Temp := Chain^[I];
Chain^[I] := Chain^[J];
Chain^[J] := Temp;
Inc(I);
Dec(J);
end;
until I > J;
if L < J then
SortChain(Chain, L, J);
L := I;
until I >= R;
end;
function GetChainsIntersection(const Chains: TChains): TChain;
var
IShortest: Integer;
I: Integer;
J: Integer;
K: Integer;
Value: Integer;
Found: Boolean;
FindCount: Integer;
begin
IShortest := 0;
for I := 1 to Length(Chains) - 1 do
if Length(Chains[I]) < Length(Chains[IShortest]) then
IShortest := I;
SetLength(Result, Length(Chains[IShortest]));
Value := 0;
FindCount := 0;
SortChain(@Chains[IShortest], 0, Length(Chains[IShortest]) - 1);
for K := 0 to Length(Chains[IShortest]) - 1 do
begin
if (K > 0) and (Chains[IShortest, K] = Value) then
Continue;
Value := Chains[IShortest, K];
Found := False;
for I := 0 to Length(Chains) - 1 do
if I <> IShortest then
begin
Found := False;
for J := 0 to Length(Chains[I]) - 1 do
if Chains[I, J] = Value then
begin
Found := True;
Break;
end;
if not Found then
Break;
end;
if Found then
begin
Result[FindCount] := Value;
Inc(FindCount);
end;
end;
SetLength(Result, FindCount);
end;
function GetDuplicateShackles(const Chains: TChains): TChain;
var
Count: Integer;
I: Integer;
Temp: TChain;
PrevValue: Integer;
begin
SetLength(Result, 0);
Count := 0;
for I := 0 to Length(Chains) - 1 do
Inc(Count, Length(Chains[I]));
if Count > 0 then
begin
SetLength(Temp, Count);
Count := 0;
for I := 0 to Length(Chains) - 1 do
begin
Move(Chains[I][0], Temp[Count], Length(Chains[I]) * SizeOf(Integer));
Inc(Count, Length(Chains[I]));
end;
SortChain(@Temp, 0, Count - 1);
SetLength(Result, Count);
Count := 0;
PrevValue := Temp[0];
for I := 1 to Length(Temp) - 1 do
begin
if (Temp[I] = PrevValue) and
((Count = 0) or (Temp[I] <> Result[Count - 1])) then
begin
Result[Count] := PrevValue;
Inc(Count);
end;
PrevValue := Temp[I];
end;
SetLength(Result, Count);
end;
end;
{ TForm1 }
procedure TForm1.FormCreate(Sender: TObject);
begin
Grid.ColCount := MaxDepth;
Grid.RowCount := MaxDepth;
end;
procedure TForm1.ClearGrid;
var
I: Integer;
begin
for I := 0 to Grid.ColCount - 1 do
Grid.Cols[I].Text := '';
end;
procedure TForm1.ShowChains(const Chains: TChains);
var
I: Integer;
J: Integer;
begin
for I := 0 to Length(Chains) - 1 do
for J := 0 to Length(Chains[I]) - 1 do
Grid.Cells[I, J] := IntToStr(Chains[I, J]);
end;
procedure TForm1.ShowChain(const Chain: TChain; const Title: String);
var
I: Integer;
begin
if Length(Chain) = 0 then
Memo.Lines.Add('No ' + Title)
else
begin
Memo.Lines.Add(Title + ':');
for I := 0 to Length(Chain) - 1 do
Memo.Lines.Add(IntToStr(Chain[I]));
end;
end;
procedure TForm1.IntersectionButtonClick(Sender: TObject);
var
FillUp: Boolean;
Chains: TChains;
Chain: TChain;
begin
ClearGrid;
Memo.Clear;
FillUp := Sender = IntersectionFullButton;
if FillUp then
FillChains(Chains, True, 8)
else
FillChains(Chains, False, 4);
ShowChains(Chains);
Chain := GetChainsIntersection(Chains);
ShowChain(Chain, 'Intersection');
end;
procedure TForm1.DuplicatesButtonClick(Sender: TObject);
var
Chains: TChains;
Chain: TChain;
begin
ClearGrid;
Memo.Clear;
FillChains(Chains, Sender = DuplicatesFullButton, 900);
ShowChains(Chains);
Chain := GetDuplicateShackles(Chains);
ShowChain(Chain, 'Duplicates');
end;
initialization
Randomize;
end.
Unit1.DFM:
object Form1: TForm1
Left = 343
Top = 429
Width = 822
Height = 459
Caption = 'Form1'
Color = clBtnFace
Font.Charset = DEFAULT_CHARSET
Font.Color = clWindowText
Font.Height = -11
Font.Name = 'MS Sans Serif'
Font.Style = []
OldCreateOrder = False
OnCreate = FormCreate
DesignSize = (
806
423)
PixelsPerInch = 96
TextHeight = 13
object Memo: TMemo
Left = 511
Top = 63
Width = 295
Height = 360
Anchors = [akLeft, akTop, akRight, akBottom]
ScrollBars = ssVertical
TabOrder = 5
end
object IntersectionFullButton: TButton
Left = 511
Top = 7
Width = 141
Height = 25
Caption = 'Intersection (full chains)'
TabOrder = 1
OnClick = IntersectionButtonClick
end
object Grid: TStringGrid
Left = 0
Top = 0
Width = 503
Height = 423
Align = alLeft
ColCount = 20
DefaultColWidth = 24
DefaultRowHeight = 20
FixedCols = 0
RowCount = 20
FixedRows = 0
TabOrder = 0
end
object DuplicatesFullButton: TButton
Left = 658
Top = 7
Width = 141
Height = 25
Caption = 'Duplicates (full chains)'
TabOrder = 3
OnClick = DuplicatesButtonClick
end
object IntersectionPartialButton: TButton
Left = 511
Top = 35
Width = 141
Height = 25
Caption = 'Intersection (partial chains)'
TabOrder = 2
OnClick = IntersectionButtonClick
end
object DuplicatesPartialButton: TButton
Left = 658
Top = 35
Width = 141
Height = 25
Caption = 'Duplicates (partial chains)'
TabOrder = 4
OnClick = DuplicatesButtonClick
end
end