Below is a simple thresholding method to find the lines and their width, it should work quite reliably for any number of lines. The yellow and black image below was processed using this script, the red/black plot illustrates the found lines using parameters of threshold = 0.3, min_line_width = 5
)

The script averages the rows of an image, and then determines the basic start and end positions of each line based on a threshold (which you can set between 0 and 1), and a minimum line width (in pixels). By using thresholding and minimum line width you can easily filter your input images to get the lines out of them. The first function find_lines
returns all the lines in an image as a list of tuples containing the start, end, center, and width of each line. The second function find_closest_band_width
is called with the specified x_position
, and returns the width of the closest line to this position (assuming you want distance to centre for each line). As the lines are saturated (255 cut-off per channel), their cross-sections are not far from a uniform distribution, so I don't believe trying to fit any kind of distribution is really going to help too much, just unnecessarily complicates.
import Image, ImageStat
def find_lines(image_file, threshold, min_line_width):
im = Image.open(image_file)
width, height = im.size
hist = []
lines = []
start = end = 0
for x in xrange(width):
column = im.crop((x, 0, x + 1, height))
stat = ImageStat.Stat(column)
## normalises by 2 * 255 as in your example the colour is yellow
## if your images start using white lines change this to 3 * 255
hist.append(sum(stat.sum) / (height * 2 * 255))
for index, value in enumerate(hist):
if value > threshold and end >= start:
start = index
if value < threshold and end < start:
if index - start < min_line_width:
start = 0
else:
end = index
center = start + (end - start) / 2.0
width = end - start
lines.append((start, end, center, width))
return lines
def find_closest_band_width(x_position, lines):
distances = [((value[2] - x_position) ** 2) for value in lines]
index = distances.index(min(distances))
return lines[index][3]
## set your threshold, and min_line_width for finding lines
lines = find_lines("8IxWA_sample.png", 0.7, 4)
## sets x_position to 59th pixel
print 'width of nearest line:', find_closest_band_width(59, lines)