The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode, at:

The Nernst equation adjusts for general concentrations, pressures, or temperatures.

Simultaneous half-reactions do not in general add voltages, but instead add Gibbs free energy change: the product of the voltage and the number of electrons transferred, typically the Faraday constant. For example, from Fe2+ + 2e Fe(s) (–0.44 V), the energy to create one neutral atom of Fe(s) from one Fe2+ ion and two electrons is 2 × 0.44 eV = 0.88 eV, or 84 895 J/(mol e). That value is also the standard formation energy for an Fe2+ ion, since e and Fe(s) both have zero formation energy.

Data from different sources may cause table inconsistencies. For example:

Additivity of Gibbs energy implies

not the experimental 0.159 V.

Table of standard electrode potentials

Legend: (s) solid; (l) liquid; (g) gas; (aq) aqueous (default for all charged species); (Hg) amalgam; bold water electrolysis equations.

Element Half-reaction / V Electrons
Oxidant Reductant
Sr Sr+
+ e
Sr(s) -4.101 1
Ca Ca+
+ e
Ca(s) -3.8 1
Th Th4+
+ e
Th3+
-3.6 1
Pr Pr3+
+ e
Pr2+
-3.1 1
N 3N
2
(g) + 2H+ + 2e
2HN
3
(aq)
-3.09 2
Li Li+
+ e
Li(s) -3.0401 1
N N
2
(g) + 4H2O + 2e
2NH
2
OH
(aq) + 2OH
-3.04 2
Cs Cs+
+ e
Cs(s) -3.026 1
Ca Ca(OH)
2
+ 2e
Ca(s) + 2OH -3.02 2
Er Er3+
+ e
Er2+
-3 1
Ba Ba(OH)
2
+ 2e
Ba(s) + 2OH -2.99 2
Rb Rb+
+ e
Rb(s) -2.98 1
K K+
+ e
K(s) -2.931 1
Ba Ba2+
+ 2e
Ba(s) -2.912 2
La La(OH)
3
(s) + 3e
La(s) + 3OH -2.9 3
Fr Fr+
+ e
Fr(s) -2.9 1
Sr Sr2+
+ 2e
Sr(s) -2.899 2
Sr Sr(OH)
2
+ 2e
Sr(s) + 2OH -2.88 2
Ca Ca2+
+ 2e
Ca(s) -2.868 2
Li Li+
+ C
6
(s) + e
LiC
6
(s)
-2.84 1
Eu Eu2+
+ 2e
Eu(s) -2.812 2
Ra Ra2+
+ 2e
Ra(s) -2.8 2
Ho Ho3+
+ e
Ho2+ -2.8 1
Bk Bk3+
+ e
Bk2+
-2.8 1
Yb Yb2+
+ 2e
Yb(s) -2.76 2
Na Na+
+ e
Na(s) -2.71 1
Mg Mg+
+ e
Mg(s) -2.7 1
Nd Nd3+
+ e
Nd2+
-2.7 1
Mg Mg(OH)
2
+ 2e
Mg(s) + 2OH -2.69 2
Sm Sm2+
+ 2e
Sm(s) -2.68 2
Be Be
2
O2−
3
+ 3H2O + 4e
2Be(s) + 6OH -2.63 4
Pm Pm3+
+ e
Pm2+
-2.6 1
Dy Dy3+
+ e
Dy2+
-2.6 1
No No2+
+ 2e
No -2.5 2
Hf HfO(OH)
2
+ H2O + 4e
Hf(s) + 4OH -2.5 4
Th Th(OH)
4
+ 4e
Th(s) + 4OH -2.48 4
Md Md2+
+ 2e
Md -2.4 2
Tm Tm2+
+ 2e
Tm(s) -2.4 2
La La3+
+ 3e
La(s) -2.379 3
Y Y3+
+ 3e
Y(s) -2.372 3
Mg Mg2+
+ 2e
Mg(s) -2.372 2
ScScF3(aq) + 3H+ + 3eSc(s) + 3HF(aq)-2.373
Zr ZrO(OH)
2
(s) + H2O + 4e
Zr(s) + 4OH -2.36 4
Pr Pr3+
+ 3e
Pr(s) -2.353 3
Ce Ce3+
+ 3e
Ce(s) -2.336 3
Er Er3+
+ 3e
Er(s) -2.331 3
Ho Ho3+
+ 3e
Ho(s) -2.33 3
Al H
2
AlO
3
+ H2O + 3e
Al(s) + 4OH -2.33 3
Nd Nd3+
+ 3e
Nd(s) -2.323 3
Tm Tm3+
+ 3e
Tm(s) -2.319 3
Al Al(OH)
3
(s) + 3e
Al(s) + 3OH -2.31 3
Sm Sm3+
+ 3e
Sm(s) -2.304 3
Fm Fm2+ + 2e Fm -2.3 2
Am Am3+
+ e
Am2+
-2.3 1
Dy Dy3+
+ 3e
Dy(s) -2.295 3
Lu Lu3+
+ 3e
Lu(s) -2.28 3
ScScF+
2
+ 2H+ + 3e
Sc(s) + 2HF(l)-2.283
Tb Tb3+
+ 3e
Tb(s) -2.28 3
Gd Gd3+
+ 3e
Gd(s) -2.279 3
H H
2
(g) + 2e
2H
-2.23 2
Es Es2+
+ 2e
Es(s) -2.23 2
Pm Pm2+
+ 2e
Pm(s) -2.2 2
Tm Tm3+
+ e
Tm2+ -2.2 1
Dy Dy2+
+ 2e
Dy(s) -2.2 2
Ac Ac3+
+ 3e
Ac(s) -2.2 3
Yb Yb3+
+ 3e
Yb(s) -2.19 3
Cf Cf2+
+ 2e
Cf(s) -2.12 2
Nd Nd2+
+ 2e
Nd(s) -2.1 2
Ho Ho2+
+ 2e
Ho(s) -2.1 2
Sc Sc3+
+ 3e
Sc(s) -2.077 3
Al AlF3−
6
+ 3e
Al(s) + 6F
-2.069 3
Cm Cm3+
+ 3e
Cm(s) -2.04 3
Pu Pu3+
+ 3e
Pu(s) -2.031 3
Pr Pr2+
+ 2e
Pr(s) -2 2
Er Er2+
+ 2e
Er(s) -2 2
Eu Eu3+
+ 3e
Eu(s) -1.991 3
Lr Lr3+
+ 3e
Lr -1.96 3
Cf Cf3+
+ 3e
Cf(s) -1.94 3
Es Es3+
+ 3e
Es(s) -1.91 3
Pa Pa4+
+ e
Pa3+
-1.9 1
Am Am2+
+ 2e
Am(s) -1.9 2
Th Th4+
+ 4e
Th(s) -1.899 4
Fm Fm3+
+ 3e
Fm -1.89 3
NN2(g) + 2H2O(l) + 4H+ + 2e2NH3OH+-1.872
Np Np3+
+ 3e
Np(s) -1.856 3
Be Be2+
+ 2e
Be(s) -1.847 2
P H
2
PO
2
+ e
P(s) + 2OH -1.82 1
U U3+
+ 3e
U(s) -1.798 3
Sr Sr2+
+ 2e
Sr(Hg) -1.793 2
B H
2
BO
3
+ H2O + 3e
B(s) + 4OH -1.79 3
Th ThO
2
+ 4H+ + 4e
Th(s) + 2H2O -1.789 4
Hf HfO2+
+ 2H+ + 4e
Hf(s) + H2O -1.724 4
P HPO2−
3
+ 2H2O + 3e
P(s) + 5OH -1.71 3
Si SiO2−
3
+ 3H2O + 4e
Si(s) + 6OH -1.697 4
Al Al3+
+ 3e
Al(s) -1.662 3
Ti Ti2+
+ 2e
Ti(s) -1.63 2
Zr ZrO
2
(s) + 4H+ + 4e
Zr(s) + 2H2O -1.553 4
Zr Zr4+
+ 4e
Zr(s) -1.45 4
Ti Ti3+
+ 3e
Ti(s) -1.37 3
Ti TiO(s) + 2H+ + 2e Ti(s) + H2O -1.31 2
BB(OH)
4
+ 4H2O(l) + 8e
BH
4
+ 8OH
-1.248
GaGaO(OH)
2
+ H2O(l) + 3e
Ga(s) + 3OH-1.223
Ti Ti
2
O
3
(s) + 2H+ + 2e
2TiO(s) + H2O -1.23 2
Zn Zn(OH)2−
4
+ 2e
Zn(s) + 4OH -1.199 2
Mn Mn2+
+ 2e
Mn(s) -1.185 2
Fe Fe(CN)4−
6
+ 6H+ + 2e
Fe(s) + 6HCN(aq) -1.16 2
CC(s) + 3H2O(l) + 2eCH3OH(l) + 2OH-1.1482
CrCr(CN)3
6
+ e
Cr(CN)4
6
-1.1431
Te Te(s) + 2e Te2−
-1.143 2
V V2+
+ 2e
V(s) -1.13 2
Nb Nb3+
+ 3e
Nb(s) -1.099 3
Sn Sn(s) + 4H+ + 4e SnH
4
(g)
-1.07 4
Cr[Cr(edta)(H2O)] + e[Cr(edta)(H2O)]2-0.991
P2H3PO4(aq) + 2H+ + 2e(H2PO3)2(aq) + H2O(l)-0.9332
CCO2
3
+ 3H+ + 2e
HCO
2
+ H2O(l)
-0.932
Ti TiO2+
+ 2H+ + 4e
Ti(s) + H2O -0.93 4
Si SiO
2
(quartz) + 4H+ + 4e
Si(s) + 2H2O -0.909 4
CrCr2+
+ 2e
Cr(s)-0.92
B B(OH)
3
(aq) + 3H+ + 3e
B(s) + 3H2O -0.89 3
Fe Fe(OH)
2
(s) + 2e
Fe(s) + 2OH -0.89 2
Fe Fe
2
O
3
(s) + 3H2O + 2e
2Fe(OH)
2
(s) + 2OH
-0.86 2
H 2H2O + 2e H
2
(g) + 2OH
-0.8277 2
Bi Bi(s) + 3H+ + 3e BiH
3
-0.8 3
Zn Zn2+
+ 2e
Zn(Hg) -0.7628 2
Zn Zn2+
+ 2e
Zn(s) -0.7618 2
Ta Ta
2
O
5
(s) + 10H+ + 10e
2Ta(s) + 5H2O -0.75 10
Te2Te(s) + 2eTe2
2
-0.742
Ni Ni(OH)
2
(s) + 2e
Ni(s) + 2OH -0.72 2
NbNb2O5(s) + 10H+ + 10e2Nb(s) + 5H2O(l)-0.710
Ag Ag
2
S
(s) + 2e
2Ag(s) + S2−
(aq)
-0.69 2
TeTe2
2
+ 4H+ + 2e
2H2Te(g)-0.642
SbSb(OH)
4
+ 3e
Sb(s) + 4OH-0.6393
Au [Au(CN)
2
]
+ e
Au(s) + 2CN
-0.6 1
Ta Ta3+
+ 3e
Ta(s) -0.6 3
Pb PbO(s) + H2O + 2e Pb(s) + 2OH -0.580 2
Ti 2TiO
2
(s) + 2H+ + 2e
Ti
2
O
3
(s) + H2O
-0.56 2
Ga Ga3+
+ 3e
Ga(s) -0.549 3
U U4+
+ e
U3+
-0.52 1
SbSb + 3eSbH
3
-0.513
P H
3
PO
2
(aq) + H+ + e
P(white)[note 1] + 2H2O -0.508 1
P H
3
PO
3
(aq) + 2H+ + 2e
H
3
PO
2
(aq) + H2O
-0.499 2
Ni NiO
2
(s) + 2H2O + 2e
Ni(OH)
2
(s) + 2OH
-0.49 2
SbSb(OH)
6
+ 2e
Sb(OH)
4
+ 2OH
-0.4652
P H
3
PO
3
(aq) + 3H+ + 3e
P(red)[note 1] + 3H2O -0.454 3
BiBi2O3(s) + 3H2O(l) + 6eBi(s) + 6OH-0.4526
TaTaF2
7
+ 7H+ + 5e
Ta(s) + 7HF(l)-0.455
InIn3+
+ 2e
In+-0.4442
Cu Cu(CN)
2
+ e
Cu(s) + 2CN
-0.44 1
Fe Fe2+
+ 2e
Fe(s) -0.44 2
C 2CO
2
(g) + 2H+ + 2e
HOOCCOOH(aq) -0.43 2
Cr Cr3+
+ e
Cr2+
-0.407 1
Cd Cd2+
+ 2e
Cd(s) -0.4 2
TiTi3+
+ e
Ti2+
-0.371
Cu Cu
2
O
(s) + H2O + 2e
2Cu(s) + 2OH -0.36 2
Pb PbSO
4
(s) + 2e
Pb(s) + SO2−
4
-0.3588 2
Pb PbSO
4
(s) + 2e
Pb(Hg) + SO2−
4
-0.3505 2
Eu Eu3+
+ e
Eu2+
-0.35 1
In In3+
+ 3e
In(s) -0.34 3
Tl Tl+
+ e
Tl(s) -0.34 1
Ge Ge(s) + 4H+ + 4e GeH
4
(g)
-0.29 4
Co Co2+
+ 2e
Co(s) -0.28 2
P H
3
PO
4
(aq) + 2H+ + 2e
H
3
PO
3
(aq) + H2O
-0.276 2
NN2(g) + 8H+ + 6e2NH+
4
-0.276
V V3+
+ e
V2+
-0.26 1
Ni Ni2+
+ 2e
Ni(s) -0.257 2
S2HSO
4
+ 2H+ + 2e
S2O2
6
+ 2H2O(l)
-0.2532
As As(s) + 3H+ + 3e AsH
3
(g)
-0.23 3
NN2(g) + 5H+ + 4eN2H+
5
-0.234
Ga Ga+
+ e
Ga(s) -0.2 1
Ag AgI(s) + e Ag(s) + I
-0.15224 1
GeGeO2(s) + 4H+ + 4eGe(s) + H2O(l)-0.154
Mo MoO
2
(s) + 4H+ + 4e
Mo(s) + 2H2O -0.15 4
Si Si(s) + 4H+ + 4e SiH
4
(g)
-0.14 4
Sn Sn2+
+ 2e
Sn(s) -0.13 2
O O
2
(g) + H+ + e
HO
2
(aq)
-0.13 1
InIn+ + eIn(s)-0.1261
Pb Pb2+
+ 2e
Pb(s) -0.126 2
W WO
2
(s) + 4H+ + 4e
W(s) + 2H2O -0.12 4
Ge GeO
2
(s) + 2H+ + 2e
GeO(s) + H2O -0.118 2
P P(red) + 3H+ + 3e PH
3
(g)
-0.111 3
C CO
2
(g) + 2H+ + 2e
HCOOH(aq) -0.11 2
Se Se(s) + 2H+ + 2e H
2
Se
(g)
-0.11 2
C CO
2
(g) + 2H+ + 2e
CO(g) + H2O -0.11 2
Snα-SnO(s) + 2H+ + 2eSn(s) + H2O-0.1042
Cu Cu(NH
3
)+
2
+ e
Cu(s) + 2NH
3
(aq)
-0.1 1
NbNb2O5(s) + 10H+ + 4e2Nb3+
+ 5H2O(l)
-0.14
W WO
3
(aq) + 6H+ + 6e
W(s) + 3H2O -0.09 6
Sn SnO
2
(s) + 2H+ + 2e
α-SnO(s) + H2O -0.088 2
Fe Fe
3
O
4
(s) + 8H+ + 8e
3Fe(s) + 4H2O -0.085 8
VVOH2+
+ H+ + e
V2+
+ H2O(l)
-0.0821
P P(white) + 3H+ + 3e PH
3
(g)
-0.063 3
NN2O(g) + H2O(l) + 6H+ + 4e2NH3OH+-0.054
Fe Fe3+
+ 3e
Fe(s) -0.04 3
C HCOOH(aq) + 2H+ + 2e HCHO(aq) + H2O -0.034 2
H 2H+ + 2e H
2
(g)
0 2
Ag AgBr(s) + e Ag(s) + Br
0.07133 1
S S
4
O2−
6
+ 2e
2S
2
O2−
3
0.08 2
N N
2
(g) + 2H2O + 6H+ + 6e
2NH
4
OH
(aq)
0.092 6
Hg HgO(s) + H2O + 2e Hg(l) + 2OH 0.0977 2
Cu Cu(NH
3
)2+
4
+ e
Cu(NH
3
)+
2
+ 2NH
3
(aq)
0.1 1
Ru Ru(NH
3
)3+
6
+ e
Ru(NH
3
)2+
6
0.1 1
N N
2
H
4
(aq) + 4H2O + 2e
2NH+
4
+ 4OH
0.11 2
Mo H
2
MoO
4
(aq) + 6H+ + 6e
Mo(s) + 4H2O 0.11 6
Ge Ge4+
+ 4e
Ge(s) 0.12 4
C C(s) + 4H+ + 4e CH
4
(g)
0.13 4
C HCHO(aq) + 2H+ + 2e CH
3
OH
(aq)
0.13 2
S S(s) + 2H+ + 2e H
2
S
(g)
0.144 2
SbSb2O3(s) + 6H+ + 6e2Sb(s) + 3H2O0.156[6]:789
Sn Sn4+
+ 2e
Sn2+
0.151 2
S HSO
4
+ 3H+ + 2e
SO
2
(aq) + 2H2O
0.158 2
Cu Cu2+
+ e
Cu+
0.159 1
U UO2+
2
+ e
UO+
2
0.163 1
S SO2−
4
+ 4H+ + 2e
SO
2
(aq) + 2H2O
0.17 2
Ti TiO2+
+ 2H+ + e
Ti3+
+ H2O
0.19 1
Sb SbO+
+ 2H+ + 3e
Sb(s) + H2O 0.2 3
Fe 3Fe
2
O
3
(s) + 2H+ + 2e
2Fe
3
O
4
(s) + H2O
0.22 2
Ag AgCl(s) + e Ag(s) + Cl
0.22233 1
As H
3
AsO
3
(aq) + 3H+ + 3e
As(s) + 3H2O 0.24 3
Ru Ru3+
(aq) + e
Ru2+
(aq)
0.249 1
PbPbO2(s) + H2O + 2eα-PbO(s) + 2OH0.2542
Ge GeO(s) + 2H+ + 2e Ge(s) + H2O 0.26 2
HgHg2Cl2(s) + 2e2Hg(l) + 2Cl0.272
U UO+
2
+ 4H+ + e
U4+
+ 2H2O
0.273 1
Re Re3+
+ 3e
Re(s) 0.300 3
At At + e At 0.3 1
Bi Bi3+
+ 3e
Bi(s) 0.308 3
C 2HCNO + 2H+ + 2e (CN)2 + 2H2O 0.330 2
Cu Cu2+
+ 2e
Cu(s) 0.337 2
V VO2+
+ 2H+ + e
V3+
+ H2O
0.337 1
SbSb2O4(s) + 2H+ + 2eSb2O3(s) + H2O(l)0.3422
At At+ + 2e At- 0.36 2
Fe [Fe(CN)
6
]3−
+ e
[Fe(CN)
6
]4−
0.3704 1
C (CN)2 + 2H+ + 2e 2HCN 0.373 2
P(H2PO3)2(aq) + 2H+ + 2e2H3PO30.382
S2SO2(aq) + 2H+ + 2eS2O2
3
+ H2O(l)
0.42
O O
2
(g) + 2H2O + 4e
4OH(aq) 0.401 4
Mo H
2
MoO
4
+ 6H+ + 3e
Mo3+
+ 4H2O
0.43 3
Ru Ru2+
(aq) + 2e
Ru 0.455 2
VVO(OH)+ + 2H+ + eVOH2+
+ H2O(l)
0.4811
C CH
3
OH
(aq) + 2H+ + 2e
CH
4
(g) + H2O
0.5 2
S SO
2
(aq) + 4H+ + 4e
S(s) + 2H2O 0.5 4
S4SO
2
(aq) + 4H+ + 8e
S4O4
6
+ 2H2O(l)
0.518
Cu Cu+
+ e
Cu(s) 0.52 1
C CO(g) + 2H+ + 2e C(s) + H2O 0.52 2
I I
3
+ 2e
3I
0.53 2
TeTeO2(s) + 4H+ + 4eTe(s) + 2H2O(l)0.534
CuCu2+
+ Cl + e
CuCl(s)0.541
I I
2
(s) + 2e
2I
0.54 2
Au [AuI
4
]
+ 3e
Au(s) + 4I
0.56 3
As H
3
AsO
4
(aq) + 2H+ + 2e
H
3
AsO
3
(aq) + H2O
0.56 2
SS2O2
6
+ 4H+ + 2e
2H2SO30.5692
Au [AuI
2
]
+ e
Au(s) + 2I
0.58 1
Mn MnO
4
+ 2H2O + 3e
MnO
2
(s) + 4OH
0.595 3
S S
2
O2−
3
+ 6H+ + 4e
2S(s) + 3H2O 0.6 4
FeFc+
+ e
Fc(s)0.631
Mo H
2
MoO
4
(aq) + 2H+ + 2e
MoO
2
(s) + 2H2O
0.65 2
NHN3(aq) + 11H+ + 8e3NH+
4
0.698
O O
2
(g) + 2H+ + 2e
H
2
O
2
(aq)
0.695 2
SbSb2O5(s) + 4H+ + 4eSb2O3(s) + 2H2O0.6994
C + 2H+ + 2e 0.6992 2
VH2V10O4
28
+ 24H+ + 10e
10VO(OH)+ + 8H2O(l)0.72310
Pt PtCl2−
6
+ 2e
PtCl2−
4
+ 2Cl
0.726 2
Fe Fe
2
O
3
(s) + 6H+ + 2e
2Fe2+
+ 3H2O
0.728 2
Se H
2
SeO
3
(aq) + 4H+ + 4e
Se(s) + 3H2O 0.74 4
At AtO+ + 2H+ + 2e At+ + H2O 0.74 2
Tl Tl3+
+ 3e
Tl(s) 0.741 3
No No3+
+ e
No2+
0.75 1
Pt PtCl2−
4
+ 2e
Pt(s) + 4Cl
0.758 2
BrBrO + H2O(l) + 2eBr + 2OH0.762
Po Po4+ + 4e Po 0.76 4
S (SCN)2 + 2e 2SCN- 0.77 2
Fe Fe3+
+ e
Fe2+
0.771 1
Hg Hg2+
2
+ 2e
2Hg(l) 0.7973 2
Ag Ag+
+ e
Ag(s) 0.7996 1
N 2NO
3
(aq) + 4H+ + 2e
N
2
O
4
(g) + 2H2O
0.803 2
Fe 2FeO2−
4
+ 5H2O + 6e
Fe
2
O
3
(s) + 10OH
0.81 6
Au [AuBr
4
]
+ 3e
Au(s) + 4Br
0.85 3
Hg Hg2+
+ 2e
Hg(l) 0.85 2
Ir [IrCl
6
]2−
+ e
[IrCl
6
]3−
0.87 1
Mn MnO
4
+ H+ + e
HMnO
4
0.9 1
Po Po4+ + 2e Po2+ 0.9 2
Hg 2Hg2+
+ 2e
Hg2+
2
0.91 2
Pd Pd2+
+ 2e
Pd(s) 0.915 2
Au [AuCl
4
]
+ 3e
Au(s) + 4Cl
0.93 3
NNO
3
+ 3H+ + 2e
HNO2(aq)0.942
Mn MnO
2
(s) + 4H+ + e
Mn3+
+ 2H2O
0.95 1
N NO
3
(aq) + 4H+ + 3e
NO(g) + 2H2O(l) 0.958 3
Au [AuBr
2
]
+ e
Au(s) + 2Br
0.96 1
Fe Fe
3
O
4
(s) + 8H+ + 2e
3Fe2+
+ 4H2O
0.98 2
Xe [HXeO
6
]3−
+ 2H2O + 2e
[HXeO
4
]
+ 4OH
0.99 2
NHNO2(aq) + H+ + eNO(g) + H2O(l)0.9961
At HAtO + H+ + e At + H2O 1.0 1
V [VO
2
]+
(aq) + 2H+ + e
[VO]2+
(aq) + H2O
1 1
Te H
6
TeO
6
(aq) + 2H+ + 2e
TeO
2
(s) + 4H2O
1.02 2
NNO2(g) + 2H+ + 2eNO(g) + H2O(l)1.032
BrBr
3
+ 2e
3Br
1.052
SbSb2O5(s) + 2H+ + 2eSb2O4(s) + H2O(l)1.0552
IICl
2
+ e
2Cl
+ I(s)
1.061
Br Br
2
(l) + 2e
2Br
1.066 2
NN2O4(g) + 2H+ + 2e2HNO21.072
Br Br
2
(aq) + 2e
2Br
1.0873 2
Ru RuO
2
+ 4H+ + 2e
Ru2+
(aq) + 2H2O
1.120 2
Cu Cu2+
+ 2CN
+ e
Cu(CN)
2
1.12 1
I IO
3
+ 5H+ + 4e
HIO(aq) + 2H2O 1.13 4
OH2O2(aq) + H+ + eH2O(l) + HO•1.141
Au [AuCl
2
]
+ e
Au(s) + 2Cl
1.15 1
Se HSeO
4
+ 3H+ + 2e
H
2
SeO
3
(aq) + H2O
1.15 2
Ag Ag
2
O
(s) + 2H+ + 2e
2Ag(s) + H2O 1.17 2
Cl ClO
3
+ 2H+ + e
ClO
2
(g) + H2O
1.175 1
Xe [HXeO
6
]3−
+ 5H2O + 8e
Xe(g) + 11OH 1.18 8
Pt Pt2+
+ 2e
Pt(s) 1.188 2
Cl ClO
2
(g) + H+ + e
HClO
2
(aq)
1.19 1
I 2IO
3
+ 12H+ + 10e
I
2
(s) + 6H2O
1.2 10
Mn MnO
2
(s) + 4H+ + 2e
Mn2+
+ 2H2O
1.224 2
O O
2
(g) + 4H+ + 4e
2H2O 1.229 4
NN2H+
5
+ 3H+ + 2e
2NH+
4
1.282
Cl ClO
4
+ 2H+ + 2e
ClO
3
+ H2O
1.23 2
Ru [Ru(bipy)
3
]3+
+ e
[Ru(bipy)
3
]2+
1.24 1
Xe [HXeO
4
]
+ 3H2O + 6e
Xe(g) + 7OH 1.24 6
N2NO
3
+ 12H+ + 10e
N2(g) + 6H2O(l)1.2510
Tl Tl3+
+ 2e
Tl+
1.25 2
N2HNO2(aq) + 4H+ + 4eN2O(g) + 3H2O(l)1.2974
Cr Cr
2
O2−
7
+ 14H+ + 6e
2Cr3+
+ 7H2O
1.38 6
NNH3OH+ + 2H+ + 2eNH+
4
+ H2O(l)
1.352
Cl Cl
2
(g) + 2e
2Cl
1.36 2
Ru RuO
4
(aq) + 8H+ + 5e
Ru2+
(aq) + 4H2O
1.368 5
Ru RuO
4
+ 4H+ + 4e
RuO
2
+ 2H2O
1.387 4
Co CoO
2
(s) + 4H+ + e
Co3+
+ 2H2O
1.42 1
N 2NH
3
OH+
+ H+ + 2e
N
2
H+
5
+ 2H2O
1.42 2
I 2HIO(aq) + 2H+ + 2e I
2
(s) + 2H2O
1.44 2
Br BrO
3
+ 5H+ + 4e
HBrO(aq) + 2H2O 1.447 4
Pb β-PbO
2
(s) + 4H+ + 2e
Pb2+
+ 2H2O
1.46 2
Pb α-PbO
2
(s) + 4H+ + 2e
Pb2+
+ 2H2O
1.468 2
Br 2BrO
3
+ 12H+ + 10e
Br
2
(l) + 6H2O
1.48 10
At HAtO3 + 4H+ + 4e HAtO + 2H2O 1.5 4
Mn MnO
4
+ 8H+ + 5e
Mn2+
+ 4H2O
1.51 5
O HO
2
+ H+ + e
H
2
O
2
(aq)
1.51 1
Au Au3+
+ 3e
Au(s) 1.52 3
Ru RuO2−
4
(aq) + 8H+ + 4e
Ru2+
(aq) + 4H2O
1.563 4
N2NO(g) + 2H+ + 2eN2O(g) + H2O(l)1.592
Ni NiO
2
(s) + 2H+ + 2e
Ni2+
+ 2OH
1.59 2
Ce Ce4+
+ e
Ce3+
1.61 1
Cl 2HClO(aq) + 2H+ + 2e Cl
2
(g) + 2H2O
1.63 2
I IO
4
+ 2H+ + 2e
IO
3
+ H2O
1.64 2
Ag Ag
2
O
3
(s) + 6H+ + 4e
2Ag+
+ 3H2O
1.67 4
Cl HClO
2
(aq) + 2H+ + 2e
HClO(aq) + H2O 1.67 2
Pb Pb4+
+ 2e
Pb2+
1.69 2
Mn MnO
4
+ 4H+ + 3e
MnO
2
(s) + 2H2O
1.7 3
Br BrO
4
+ 2H+ + 2e
BrO
3
+ H2O
1.74 2
Ag AgO(s) + 2H+ + e Ag+
+ H2O
1.77 1
NN2O(g) + 2H+ + 2eN2(g) + H2O(l)1.772[6]:789
O H
2
O
2
(aq) + 2H+ + 2e
2H2O 1.78 2
Au Au+
+ e
Au(s) 1.83 1
Co Co3+
+ e
Co2+
1.92 1
Ag Ag2+
+ e
Ag+
1.98 1
O S
2
O2−
8
+ 2e
2SO2−
4
2.01 2
O O
3
(g) + 2H+ + 2e
O
2
(g) + H2O
2.075 2
Mn HMnO
4
+ 3H+ + 2e
MnO
2
(s) + 2H2O
2.09 2
Xe XeO
3
(aq) + 6H+ + 6e
Xe(g) + 3H2O 2.12 6
Xe H
4
XeO
6
(aq) + 8H+ + 8e
Xe(g) + 6H2O 2.18 8
Fe FeO2−
4
+ 8H+ + 3e
Fe3+
+ 4H2O
2.2 3
Xe XeF
2
(aq) + 2H+ + 2e
Xe(g) + 2HF(aq) 2.32 2
OHO• + H+ + eH2O(l)2.381
Xe H
4
XeO
6
(aq) + 2H+ + 2e
XeO
3
(aq) + 3H2O
2.42 2
F F
2
(g) + 2e
2F
2.87 2
Cm Cm4+ + e Cm3+ 3.0 1
F F
2
(g) + 2H+ + 2e
2HF(aq) 3.077 2
Tb Tb4+ + e Tb3+ 3.1 1
Pr Pr4+ + e Pr3+ 3.2 1
Kr KrF
2
(aq) + 2e
Kr(g) + 2F
(aq)
3.27 2

See also

Notes

  1. 1 2 Not specified in the indicated reference, but assumed due to the difference between the value −0.454 and that computed by (2×(−0.499) + (−0.508))/3 = −0.502, exactly matching the difference between the values for white (−0.063) and red (−0.111) phosphorus in equilibrium with PH3.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3.
  2. Greenwood and Earnshaw, p. 1263
  3. 1 2 3 4 5 Bratsch, Stephen G. (July 29, 1988) [1 March 1988]. "Standard electrode potentials and temperature coefficients in water at 298.15 K" (PDF). Journal of Physical and Chemical Reference Data. American Institute of Physics (published 1989). 18 (1): 1–21. doi:10.1063/1.555839 via NIST.
  4. 1 2 3 4 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Vanýsek, Petr (2011). "Electrochemical Series". In Haynes, William M. (ed.). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. pp. 5–80–9. ISBN 978-1-4398-5512-6.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 Atkins, Peter; Overton, Tina; Rourke, Jonathan; Weller, Mark; Armstrong, Fraser; Hagerman, Michael (2010). Inorganic Chemistry (5th ed.). New York: W. H. Freeman. ISBN 978-1-42-921820-7.
  7. 1 2 3 4 5 6 7 8 9 10 11 12 13 Atkins, Peter W. (1997). Physical Chemistry (6th ed.). W.H. Freeman. ISBN 9780716734659.
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Petr Vanysek. "Electrochemical series" (PDF). depa.fquim.unam.mx. Archived from the original (PDF) on 2021-09-16.
  9. David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, http://www.hbcpnetbase.com Archived 2017-07-24 at the Wayback Machine, CRC Press, Boca Raton, FL, 2005.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Vanýsek, Petr (2012). "Electrochemical Series". In Haynes, William M. (ed.). Handbook of Chemistry and Physics (93rd ed.). CRC Press. pp. 5–80. ISBN 9781439880494.
  11. Aylward, Gordon; Findlay, Tristan (2008). SI Chemical Data (6th ed.). Wiley. ISBN 978-0-470-81638-7.
  12. 1 2 3 4 5 "compounds information". Iron. WebElements Periodic Table of the Elements.
  13. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Bard, Allen J.; Parsons, Roger; Jordan, Joseph (1985). Standard Potentials in Aqueous Solution. CRC Press. ISBN 978-0-8247-7291-8.
  14. 1 2 3 4 5 6 7 8 9 10 Bard, A.J.; Faulkner, L.R. (2001). Electrochemical Methods. Fundamentals and Applications (2nd ed.). Wiley. ISBN 9781118312803.
  15. 1 2 3 4 5 6 7 8 9 10 11 12 Lee, J. L. (1983) [1977]. A New Concise Inorganic Chemistry (3rd ed.). London / Wokingham, Berkshire: English Language Book Society & Van Nostrand Reinhold (UK). p. 107. ISBN 0-442-30179-0. OL 4079768W via the Internet Archive.
  16. Pourbaix, Marcel (1966). Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston, Texas; Cebelcor, Brussels: NACE International. OCLC 475102548.
  17. 1 2 3 Pang, Suh Cem; Chin, Suk Fun; Anderson, Marc A. (July 2007). "Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential". J. Colloid Interface Sci. 311 (1): 94–101. Bibcode:2007JCIS..311...94P. doi:10.1016/j.jcis.2007.02.058. PMID 17395194. Retrieved 2017-03-26.
  18. 1 2 3 4 5 6 Greenwood and Earnshaw, p. 1077
  19. 1 2 3 Lavrukhina, Avgusta Konstantinovna; Pozdni︠a︡kov, Aleksandr Aleksandrovich (1970). Analytical chemistry of technetium, promethium, astatine and francium. Ann Arbor: Ann Arbor-Humphrey Science Publishers. p. 237. ISBN 0-250-39923-7. OCLC 186926.
  20. 1 2 Champion, J.; Alliot, C.; Renault, E.; Mokili, B. M.; Chérel, M.; Galland, N.; Montavon, G. (2009-12-16). "Astatine Standard Redox Potentials and Speciation in Acidic Medium" (PDF). The Journal of Physical Chemistry A. American Chemical Society (ACS). 114 (1): 576–582. doi:10.1021/jp9077008. ISSN 1089-5639. PMID 20014840. S2CID 15738065.
  21. Rock, Peter A. (February 1966). "The Standard Oxidation Potential of the Ferrocyanide-Ferricyanide Electrode at 25° and the Entropy of Ferrocyanide Ion". The Journal of Physical Chemistry. 70 (2): 576–580. doi:10.1021/j100874a042. ISSN 0022-3654.
  22. Pavlishchuk, Vitaly V.; Addison, Anthony W. (January 2000). "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C". Inorganica Chimica Acta. 298 (1): 97–102. doi:10.1016/S0020-1693(99)00407-7.
  23. Toyoshima, A.; Kasamatsu, Y.; Tsukada, K.; Asai, M.; Kitatsuji, Y.; Ishii, Y.; Toume, H.; Nishinaka, I.; Haba, H.; Ooe, K.; Sato, W.; Shinohara, A.; Akiyama, K.; Nagame, Y. (8 July 2009). "Oxidation of element 102, nobelium, with flow electrolytic column chromatography on an atom-at-a-time scale". Journal of the American Chemical Society. 131 (26): 9180–1. doi:10.1021/ja9030038. PMID 19514720.
  24. 1 2 3 4 5 6 7 "compounds information". Xenon. WebElements Periodic Table of the Elements.
  25. 1 2 Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5.
  26. 1 2 3 4 5 Ghosh, Abhik; Berg, Steffen (2014). Arrow Pushing in Inorganic Chemistry: A logical approach to the chemistry of the main-group elements. Hoboken: Wiley. p. 12. ISBN 978-1-118-17398-5.
  27. 1 2 3 Appelman, Evan H. (1973-04-01). "Nonexistent compounds. Two case histories". Accounts of Chemical Research. American Chemical Society (ACS). 6 (4): 113–117. doi:10.1021/ar50064a001. ISSN 0001-4842.
  28. Courtney, Arlene. "Oxidation Reduction Chemistry of the Elements". Ch 412 Advanced Inorganic Chemistry: Reading Materials. Western Oregon University.
  29. Leszczyński, P.J.; Grochala, W. (2013). "Strong Cationic Oxidizers: Thermal Decomposition, Electronic Structure and Magnetism of Their Compounds" (PDF). Acta Chim. Slov. 60 (3): 455–470. PMID 24169699. Archived (PDF) from the original on 2022-10-09.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.