I am a student learning C++, and I am trying to understand how null-terminated character arrays work. Suppose I define a char array like so:
char* str1 = "hello world";
As expected, strlen(str1)
is equal to 11, and it is null-terminated.
Where does C++ put the null terminator, if all 11 elements of the above char array are filled with the characters "hello world"? Is it actually allocating an array of length 12 instead of 11, with the 12th character being '\0'
? CPlusPlus.com seems to suggest that one of the 11 would need to be '\0'
, unless it is indeed allocating 12.
Suppose I do the following:
// Create a new char array
char* str2 = (char*) malloc( strlen(str1) );
// Copy the first one to the second one
strncpy( str2, str1, strlen(str1) );
// Output the second one
cout << "Str2: " << str2 << endl;
This outputs Str2: hello worldatcomY╗°g♠↕
, which I assume is C++ reading the memory at the location pointed to by the pointer char* str2
until it encounters what it interprets to be a null character.
However, if I then do this:
// Null-terminate the second one
str2[strlen(str1)] = '\0';
// Output the second one again
cout << "Terminated Str2: " << str2 << endl;
It outputs Terminated Str2: hello world
as expected.
But doesn't writing to str2[11]
imply that we are writing outside of the allocated memory space of str2
, since str2[11]
is the 12th byte, but we only allocated 11 bytes?
Running this code does not seem to cause any compiler warnings or run-time errors. Is this safe to do in practice? Would it be better to use malloc( strlen(str1) + 1 )
instead of malloc( strlen(str1) )
?