The problem of general memory allocation is a surprisingly tricky one. Some consider it solved and some unsolvable ;) If you are interested in internals, start by taking a look at Doug Lea's malloc.
The specialized memory allocators are typically much simpler - they trade the generality (e.g. by making the size fixed) for simplicity and performance. Be careful though, using general memory allocation is usually better than a hodge-podge of special allocators in realistic programs.
Once a block of memory is allocated through the "magic" of the memory allocator, it can be initialized at container's pleasure using placement new.
--- EDIT ---
The placement new is not useful for "normal" programming - you'd only need it when implementing your own container to separate memory allocation from object construction. That being said, here is a slightly contrived example for using placement new:
#include <new> // For placement new.
#include <cassert>
#include <iostream>
class A {
public:
A(int x) : X(x) {
std::cout << "A" << std::endl;
}
~A() {
std::cout << "~A" << std::endl;
}
int X;
};
int main() {
// Allocate a "dummy" block of memory large enough for A.
// Here, we simply use stack, but this could be returned from some allocator.
char memory_block[sizeof(A)];
// Construct A in that memory using placement new.
A* a = new(memory_block) A(33);
// Yup, it really is constructed!
assert(a->X == 33);
// Destroy the object, wihout freeing the underlying memory
// (which would be disaster in this case, since it is on stack).
a->~A();
return 0;
}
This prints:
A
~A
--- EDIT 2 ---
OK, here is how you do it for the array:
int main() {
// Number of objects in the array.
const size_t count = 3;
// Block of memory big enough to fit 'count' objects.
char memory_block[sizeof(A) * count];
// To make pointer arithmetic slightly easier.
A* arr = reinterpret_cast<A*>(memory_block);
// Construct all 3 elements, each with different parameter.
// We could have just as easily skipped some elements (e.g. if we
// allocated more memory than is needed to fit the actual objects).
for (int i = 0; i < count; ++i)
new(arr + i) A(i * 10);
// Yup, all of them are constructed!
for (int i = 0; i < count; ++i) {
assert(arr[i].X == i * 10);
}
// Destroy them all, without freeing the memory.
for (int i = 0; i < count; ++i)
arr[i].~A();
return 0;
}
BTW, if A
had a default constructor, you could try call it on all elements like this...
new(arr) A[count];
...but this would open a can of worms you really wouldn't want to deal with.