This is a dynamic programming problem and can be solved in O(mn) time, where m is the length of one string and n is of other.
Like any other problem solved using Dynamic Programming, we will divide the problem into subproblem. Lets say if two strings are x1x2x3....xm and y1y2y3...yn
S(i,j) is the longest common string for x1x2x3...xi and y1y2y3....yj, then
S(i,j) = max {
length of longest common substring ending at xi/yj, if ( x[i] == y[j] ),
S(i-1, j-1),
S(i, j-1),
S(i-1, j)
}
Here is working program in Java. I am sure you can convert it to C++.:
public class LongestCommonSubstring {
public static void main(String[] args) {
String str1 = "abcdefgijkl";
String str2 = "mnopabgijkw";
System.out.println(getLongestCommonSubstring(str1,str2));
}
public static String getLongestCommonSubstring(String str1, String str2) {
//Note this longest[][] is a standard auxialry memory space used in Dynamic
//programming approach to save results of subproblems.
//These results are then used to calculate the results for bigger problems
int[][] longest = new int[str2.length() + 1][str1.length() + 1];
int min_index = 0, max_index = 0;
//When one string is of zero length, then longest common substring length is 0
for(int idx = 0; idx < str1.length() + 1; idx++) {
longest[0][idx] = 0;
}
for(int idx = 0; idx < str2.length() + 1; idx++) {
longest[idx][0] = 0;
}
for(int i = 0; i < str2.length(); i++) {
for(int j = 0; j < str1.length(); j++) {
int tmp_min = j, tmp_max = j, tmp_offset = 0;
if(str2.charAt(i) == str1.charAt(j)) {
//Find length of longest common substring ending at i/j
while(tmp_offset <= i && tmp_offset <= j &&
str2.charAt(i - tmp_offset) == str1.charAt(j - tmp_offset)) {
tmp_min--;
tmp_offset++;
}
}
//tmp_min will at this moment contain either < i,j value or the index that does not match
//So increment it to the index that matches.
tmp_min++;
//Length of longest common substring ending at i/j
int length = tmp_max - tmp_min + 1;
//Find the longest between S(i-1,j), S(i-1,j-1), S(i, j-1)
int tmp_max_length = Math.max(longest[i][j], Math.max(longest[i+1][j], longest[i][j+1]));
if(length > tmp_max_length) {
min_index = tmp_min;
max_index = tmp_max;
longest[i+1][j+1] = length;
} else {
longest[i+1][j+1] = tmp_max_length;
}
}
}
return str1.substring(min_index, max_index >= str1.length() - 1 ? str1.length() - 1 : max_index + 1);
}
}