When implementing a hash table using a good hash function (one where the probability of any two elements colliding is 1 / m, where m is the number of buckets), it is well-known that the average-case running time for looking up an element is Θ(1 + α), where α is the load factor. The worst-case running time is O(n), though, if all the elements end up put into the same bucket.
I was recently doing some reading on hash tables and found this article which claims (on page 3) that if α = 1, the expected worst-case complexity is Θ(log n / log log n). By "expected worst-case complexity," I mean, on expectation, the maximum amount of work you'll have to do if the elements are distributed by a uniform hash function. This is different from the actual worst-case, since the worst-case behavior (all elements in the same bucket) is extremely unlikely to actually occur.
My question is the following - the author seems to suggest that differing the value of α can change the expected worst-case complexity of a lookup. Does anyone know of a formula, table, or article somewhere that discusses how changing α changes the expected worst-case runtime?