For a project I'm working on, I'm implementing a linked-list data-structure, which is based on the idea of a pair, which I define as:
class Pair:
def __init__(self, name, prefs, score):
self.name = name
self.score = score
self.preferences = prefs
self.next_pair = 0
self.prev_pair = 0
where self.next_pair
and self.prev_pair
are pointers to the previous and next links, respectively.
To set up the linked-list, I have an install function that looks like this.
def install(i, pair):
flag = 0
try:
old_pair = pair_array[i]
while old_pair.next_pair != 0:
if old_pair == pair:
#if pair in remainders: remainders.remove(pair)
return 0
if old_pair.score < pair.score:
flag = 1
if old_pair.prev_pair == 0: # we are at the beginning
old_pair.prev_pair = pair
pair.next_pair = old_pair
pair_array[i] = pair
break
else: # we are not at the beginning
pair.prev_pair = old_pair.prev_pair
pair.next_pair = old_pair
old_pair.prev_pair = pair
pair.prev_pair.next_pair = pair
break
else:
old_pair = old_pair.next_pair
if flag==0:
if old_pair == pair:
#if pair in remainders: remainders.remove(pair)
return 0
if old_pair.score < pair.score:
if old_pair.prev_pair==0:
old_pair.prev_pair = pair
pair.next_pair = old_pair
pair_array[i] = pair
else:
pair.prev_pair = old_pair.prev_pair
pair.next_pair = old_pair
old_pair.prev_pair = pair
pair.prev_pair.next_pair = pair
else:
old_pair.next_pair = pair
pair.prev_pair = old_pair
except KeyError:
pair_array[i] = pair
pair.prev_pair = 0
pair.next_pair = 0
Over the course of the program, I am building up a dictionary of these linked-lists, and taking links off of some and adding them in others. Between being pruned and re-installed, the links are stored in an intermediate array.
Over the course of debugging this program, I have come to realize that my understanding of the way Python passes arguments to functions is flawed. Consider this test case I wrote:
def test_install():
p = Pair(20000, [3, 1, 2, 50], 45)
print p.next_pair
print p.prev_pair
parse_and_get(g)
first_run()
rat = len(juggler_array)/len(circuit_array)
pref_size = get_pref_size()
print pref_size
print install(3, p)
print p.next_pair.name
print p.prev_pair
When I run this test, I get the following result.
0
0
10
None
10108
0
What I don't understand is why the second call to p.next_pair
produces a different result (10108
) than the first call (0
). install
does not return a Pair
object that can overwrite the one passed in (it returns None
), and it's not as though I'm passing install
a pointer.
My understanding of call-by-value is that the interpreter copies the values passed into a function, leaving the caller's variables unchanged. For example, if I say
def foo(x):
x = x+1
return x
baz = 2
y = foo(baz)
print y
print baz
Then 3
and 2
should be printed, respectively. And indeed, when I test that out in the Python interpreter, that's what happens.
I'd really appreciate it if anyone can point me in the right direction here.