I appear to have coded a class that travels backwards in time. Allow me to explain:
I have a function, OrthogonalCamera::project()
, that sets a matrix to a certain value. I then print out the value of that matrix, as such.
cam.project();
std::cout << "My Projection Matrix: " << std::endl << ProjectionMatrix::getMatrix() << std::endl;
cam.project()
pushes a matrix onto ProjectionMatrix's stack (I am using the std::stack container), and ProjectionMatrix::getMatrix()
just returns the stack's top element. If I run just this code, I get the following output:
2 0 0 0
0 7.7957 0 0
0 0 -0.001 0
-1 -1 -0.998 1
But if I run the code with these to lines after the std::cout
call
float *foo = new float[16];
Mat4 fooMatrix = foo;
Then I get this output:
2 0 0 0
0 -2 0 0
0 0 -0.001 0
-1 1 -0.998 1
My question is the following: what could I possibly be doing such that code executed after I print a value changes the value being printed?
Some of the functions I'm using:
static void load(Mat4 &set)
{
if(ProjectionMatrix::matrices.size() > 0)
ProjectionMatrix::matrices.pop();
ProjectionMatrix::matrices.push(set);
}
static Mat4 &getMatrix()
{
return ProjectionMatrix::matrices.top();
}
and
void OrthogonalCamera::project()
{
Mat4 orthProjection = { { 2.0f / (this->r - this->l), 0, 0, -1 * ((this->r + this->l) / (this->r - this->l)) },
{ 0, 2.0f / (this->t - this->b), 0, -1 * ((this->t + this->b) / (this->t - this->b)) },
{ 0, 0, -2.0f / (this->farClip - this->nearClip), -1 * ((this->farClip + this->nearClip) / (this->farClip - this->nearClip)) },
{ 0, 0, 0, 1 } }; //this is apparently the projection matrix for an orthographic projection.
orthProjection = orthProjection.transpose();
ProjectionMatrix::load(orthProjection);
}
EDIT: whoever formatted my code, thank you. I'm not really too good with the formatting here, and it looks much nicer now :)
FURTHER EDIT: I have verified that the initialization of fooMatrix is running after I call std::cout.
UPTEENTH EDIT: Here is the function that initializes fooMatrix:
typedef Matrix<float, 4, 4> Mat4;
template<typename T, unsigned int rows, unsigned int cols>
Matrix<T, rows, cols>::Matrix(T *set)
{
this->matrixData = new T*[rows];
for (unsigned int i = 0; i < rows; i++)
{
this->matrixData[i] = new T[cols];
}
unsigned int counter = 0; //because I was too lazy to use set[(i * cols) + j]
for (unsigned int i = 0; i < rows; i++)
{
for (unsigned int j = 0; j < cols; j++)
{
this->matrixData[i][j] = set[counter];
counter++;
}
}
}
g64th EDIT: This isn't just an output problem. I actually have to use the value of the matrix elsewhere, and it's value aligns with the described behaviours (whether or not I print it).
TREE 3rd EDIT: Running it through the debugger gave me a yet again different value:
-7.559 0 0 0
0 -2 0 0
0 0 -0.001 0
1 1 -0.998 1
a(g64, g64)th EDIT: the problem does not exist compiling on linux. Just on Windows with MinGW. Could it be a compiler bug? That would make me sad.
FINAL EDIT: It works now. I don't know what I did, but it works. I've made sure I was using an up-to-date build that didn't have the code that ensures causality still functions, and it works. Thank you for helping me figure this out, stackoverflow community. As always you've been helpful and tolerant of my slowness. I'll by hypervigilant for any undefined behaviours or pointer screw-ups that can cause this unpredictability.