I'm learning data structures and algorithms, and here is a question that I'm stuck with.
I have to improve the performance of the recursive call by storing the value into memory.
But the problem is that the non-improved version seems faster than this.
Can someone help me out?
Syracuse numbers are a sequence of positive integers defined by the following rules:
syra(1) ≡ 1
syra(n) ≡ n + syra(n/2), if n mod 2 == 0
syra(n) ≡ n + syra((n*3)+1), otherwise
import java.util.HashMap;
import java.util.Map;
public class SyraLengthsEfficient {
int counter = 0;
public int syraLength(long n) {
if (n < 1) {
throw new IllegalArgumentException();
}
if (n < 500 && map.containsKey(n)) {
counter += map.get(n);
return map.get(n);
} else if (n == 1) {
counter++;
return 1;
} else if (n % 2 == 0) {
counter++;
return syraLength(n / 2);
} else {
counter++;
return syraLength(n * 3 + 1);
}
}
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
public int lengths(int n) {
if (n < 1) {
throw new IllegalArgumentException();
}
for (int i = 1; i <= n; i++) {
syraLength(i);
if (i < 500 && !map.containsKey(i)) {
map.put(i, counter);
}
}
return counter;
}
public static void main(String[] args) {
System.out.println(new SyraLengthsEfficient().lengths(5000000));
}
}
Here is the normal version that i wrote:
public class SyraLengths{
int total=1;
public int syraLength(long n) {
if (n < 1)
throw new IllegalArgumentException();
if (n == 1) {
int temp=total;
total=1;
return temp;
}
else if (n % 2 == 0) {
total++;
return syraLength(n / 2);
}
else {
total++;
return syraLength(n * 3 + 1);
}
}
public int lengths(int n){
if(n<1){
throw new IllegalArgumentException();
}
int total=0;
for(int i=1;i<=n;i++){
total+=syraLength(i);
}
return total;
}
public static void main(String[] args){
System.out.println(new SyraLengths().lengths(5000000));
}
}
EDIT
It is slower than non-enhanced version.
import java.util.HashMap;
import java.util.Map;
public class SyraLengthsEfficient {
private Map<Long, Long> map = new HashMap<Long, Long>();
public long syraLength(long n, long count) {
if (n < 1)
throw new IllegalArgumentException();
if (!map.containsKey(n)) {
if (n == 1) {
count++;
map.put(n, count);
} else if (n % 2 == 0) {
count++;
map.put(n, count + syraLength(n / 2, 0));
} else {
count++;
map.put(n, count + syraLength(3 * n + 1, 0));
}
}
return map.get(n);
}
public int lengths(int n) {
if (n < 1) {
throw new IllegalArgumentException();
}
int total = 0;
for (int i = 1; i <= n; i++) {
// long temp = syraLength(i, 0);
// System.out.println(i + " : " + temp);
total += syraLength(i, 0);
}
return total;
}
public static void main(String[] args) {
System.out.println(new SyraLengthsEfficient().lengths(50000000));
}
}
FINAL SOLUTION (mark as correct by school auto mark system)
public class SyraLengthsEfficient {
private int[] values = new int[10 * 1024 * 1024];
public int syraLength(long n, int count) {
if (n <= values.length && values[(int) (n - 1)] != 0) {
return count + values[(int) (n - 1)];
} else if (n == 1) {
count++;
values[(int) (n - 1)] = 1;
return count;
} else if (n % 2 == 0) {
count++;
if (n <= values.length) {
values[(int) (n - 1)] = count + syraLength(n / 2, 0);
return values[(int) (n - 1)];
} else {
return count + syraLength(n / 2, 0);
}
} else {
count++;
if (n <= values.length) {
values[(int) (n - 1)] = count + syraLength(n * 3 + 1, 0);
return values[(int) (n - 1)];
} else {
return count + syraLength(n * 3 + 1, 0);
}
}
}
public int lengths(int n) {
if (n < 1) {
throw new IllegalArgumentException();
}
int total = 0;
for (int i = 1; i <= n; i++) {
total += syraLength(i, 0);
}
return total;
}
public static void main(String[] args) {
SyraLengthsEfficient s = new SyraLengthsEfficient();
System.out.println(s.lengths(50000000));
}
}