From wiki:
In Java specifically, a happens-before relationship is a guarantee that memory written to by statement A is visible to statement B, that is, that statement A completes its write before statement B starts its read.
So if thread A write t.a with value 10 and thread B tries to read t.a some later, happens-before relationship guarantees that thread B must read value 10 written by thread A, not any other value. It's natural, just like Alice buys milk and put them into fridge then Bob opens fridge and sees the milk. However, when computer is running, memory access usually doesn't access memory directly, that's too slow. Instead, software get the data from register or cache to save time. It loads data from memory only when cache miss happens. That the problem happens.
Let's see the code in the question:
class Test {
volatile int a;
public static void main(String ... args) {
final Test t = new Test();
new Thread(new Runnable(){ //thread A
@Override
public void run() {
Thread.sleep(3000);
t.a = 10;
}
}).start();
new Thread(new Runnable(){ //thread B
@Override
public void run() {
System.out.println("Value " + t.a);
}
}).start();
}
}
Thread A writes 10 into value t.a and thread B tries to read it out. Suppose thread A writes before thread B reads, then when thread B reads it will load the value from the memory because it doesn't cache the value in register or cache so it always get 10 written by thread A. And if thread A writes after thread B reads, thread B reads initial value (0). So this example doesn't show how volatile works and the difference. But if we change the code like this:
class Test {
volatile int a;
public static void main(String ... args) {
final Test t = new Test();
new Thread(new Runnable(){ //thread A
@Override
public void run() {
Thread.sleep(3000);
t.a = 10;
}
}).start();
new Thread(new Runnable(){ //thread B
@Override
public void run() {
while (1) {
System.out.println("Value " + t.a);
}
}
}).start();
}
}
Without volatile, the print value should always be initial value (0) even some read happens after thread A writes 10 into t.a, which violate the happen-before relationship. The reason is compiler optimizes the code and save the t.a into register and every time it will use the register value instead of reading from cache memory, of course which much faster. But it also cause the happen-before relationship violation problem because thread B can't get the right value after others update it.
In the above example, volatile write happens-before volatile read means that with volatile thread B will get the right value of t.a once after thread A update it. Compiler will guarantee every time thread B reads t.a, it must read from cache or memory instead of just using register's stale value.