I have a problem that I can't seem to get a working algorithm for, I've been trying to days and get so close but yet so far.
I want to draw a triangle defined by 3 points (p0, p1, p2). This triangle can be any shape, size, and orientation. The triangle must also be filled inside.
Here's a few things I've tried and why they've failed:
1
- Drawing lines along the triangle from side to side
- Failed because the triangle would have holes and would not be flat due to the awkwardness of drawing lines across the angled surface with changing locations
2
- Iterate for an area and test if the point falls past the plane parallel to the triangle and 3 other planes projected onto the XY, ZY, and XZ plane that cover the area of the triangle
- Failed because for certain triangles (that have very close sides) there would be unpredictable results, e.g. voxels floating around not connected to anything
3
- Iterate for an area along the sides of the triangle (line algorithm) and test to see if a point goes past a parallel plane
- Failed because drawing a line from p0 to p1 is not the same as a line from p1 to p0 and any attempt to rearrange either doesn't help, or causes more problems. Asymmetry is the problem with this one.
This is all with the intent of making polygons and flat surfaces. 3 has given me the most success and makes accurate triangles, but when I try to connect these together everything falls apart and I get issues with things not connecting, asymmetry, etc. I believe 3 will work with some tweaking but I'm just worn out from trying to make this work for so long and need help.
There's a lot of small details in my algorithms that aren't really relevant so I left them out. For number 3 it might be a problem with my implementation and not the algorithm itself. If you want code I'll try and clean it up enough to be understandable, it will take me a few minutes though. But I'm looking for algorithms that are known to work. I can't seem to find any voxel shape making algorithms anywhere, I've been doing everything from scratch.
EDIT:
Here's the third attempt. It's a mess, but I tried to clean it up.
// Point3i is a class I made, however the Vector3fs you'll see are from lwjgl
public void drawTriangle (Point3i r0, Point3i r1, Point3i r2)
{
// Util is a class I made with some useful stuff inside
// Starting values for iteration
int sx = (int) Util.min(r0.x, r1.x, r2.x);
int sy = (int) Util.min(r0.y, r1.y, r2.y);
int sz = (int) Util.min(r0.z, r1.z, r2.z);
// Ending values for iteration
int ex = (int) Util.max(r0.x, r1.x, r2.x);
int ey = (int) Util.max(r0.y, r1.y, r2.y);
int ez = (int) Util.max(r0.z, r1.z, r2.z);
// Side lengths
float l0 = Util.distance(r0.x, r1.x, r0.y, r1.y, r0.z, r1.z);
float l1 = Util.distance(r2.x, r1.x, r2.y, r1.y, r2.z, r1.z);
float l2 = Util.distance(r0.x, r2.x, r0.y, r2.y, r0.z, r2.z);
// Calculate the normal vector
Vector3f nn = new Vector3f(r1.x - r0.x, r1.y - r0.y, r1.z - r0.z);
Vector3f n = new Vector3f(r2.x - r0.x, r2.y - r0.y, r2.z - r0.z);
Vector3f.cross(nn, n, n);
// Determines which direction we increment for
int iz = n.z >= 0 ? 1 : -1;
int iy = n.y >= 0 ? 1 : -1;
int ix = n.x >= 0 ? 1 : -1;
// Reorganize for the direction of iteration
if (iz < 0) {
int tmp = sz;
sz = ez;
ez = tmp;
}
if (iy < 0) {
int tmp = sy;
sy = ey;
ey = tmp;
}
if (ix < 0) {
int tmp = sx;
sx = ex;
ex = tmp;
}
// We're we want to iterate over the end vars so we change the value
// by their incrementors/decrementors
ex += ix;
ey += iy;
ez += iz;
// Maximum length
float lmax = Util.max(l0, l1, l2);
// This is a class I made which manually iterates over a line, I already
// know that this class is working
GeneratorLine3d g0, g1, g2;
// This is a vector for the longest side
Vector3f v = new Vector3f();
// make the generators
if (lmax == l0) {
v.x = r1.x - r0.x;
v.y = r1.y - r0.y;
v.z = r1.z - r0.z;
g0 = new GeneratorLine3d(r0, r1);
g1 = new GeneratorLine3d(r0, r2);
g2 = new GeneratorLine3d(r2, r1);
}
else if (lmax == l1) {
v.x = r1.x - r2.x;
v.y = r1.y - r2.y;
v.z = r1.z - r2.z;
g0 = new GeneratorLine3d(r2, r1);
g1 = new GeneratorLine3d(r2, r0);
g2 = new GeneratorLine3d(r0, r1);
}
else {
v.x = r2.x - r0.x;
v.y = r2.y - r0.y;
v.z = r2.z - r0.z;
g0 = new GeneratorLine3d(r0, r2);
g1 = new GeneratorLine3d(r0, r1);
g2 = new GeneratorLine3d(r1, r2);
}
// Absolute values for the normal
float anx = Math.abs(n.x);
float any = Math.abs(n.y);
float anz = Math.abs(n.z);
int i, o;
int si, so;
int ii, io;
int ei, eo;
boolean maxx, maxy, maxz,
midy, midz, midx,
minx, miny, minz;
maxx = maxy = maxz =
midy = midz = midx =
minx = miny = minz = false;
// Absolute values for the longest side vector
float rnx = Math.abs(v.x);
float rny = Math.abs(v.y);
float rnz = Math.abs(v.z);
int rmid = Util.max(rnx, rny, rnz);
if (rmid == rnz) midz = true;
else if (rmid == rny) midy = true;
midx = !midz && !midy;
// Determine the inner and outer loop directions
if (midz) {
if (any > anx)
{
maxy = true;
si = sy;
ii = iy;
ei = ey;
}
else {
maxx = true;
si = sx;
ii = ix;
ei = ex;
}
}
else {
if (anz > anx) {
maxz = true;
si = sz;
ii = iz;
ei = ez;
}
else {
maxx = true;
si = sx;
ii = ix;
ei = ex;
}
}
if (!midz && !maxz) {
minz = true;
so = sz;
eo = ez;
}
else if (!midy && !maxy) {
miny = true;
so = sy;
eo = ey;
}
else {
minx = true;
so = sx;
eo = ex;
}
// GeneratorLine3d is iterable
Point3i p1;
for (Point3i p0 : g0) {
// Make sure the two 'mid' coordinate correspond for the area inside the triangle
if (midz)
do p1 = g1.hasNext() ? g1.next() : g2.next();
while (p1.z != p0.z);
else if (midy)
do p1 = g1.hasNext() ? g1.next() : g2.next();
while (p1.y != p0.y);
else
do p1 = g1.hasNext() ? g1.next() : g2.next();
while (p1.x != p0.x);
eo = (minx ? p0.x : miny ? p0.y : p0.z);
so = (minx ? p1.x : miny ? p1.y : p1.z);
io = eo - so >= 0 ? 1 : -1;
for (o = so; o != eo; o += io) {
for (i = si; i != ei; i += ii) {
int x = maxx ? i : midx ? p0.x : o;
int y = maxy ? i : midy ? p0.y : o;
int z = maxz ? i : midz ? p0.z : o;
// isPassing tests to see if a point goes past a plane
// I know it's working, so no code
// voxels is a member that is an arraylist of Point3i
if (isPassing(x, y, z, r0, n.x, n.y, n.z)) {
voxels.add(new Point3i(x, y, z));
break;
}
}
}
}
}