polyfit does work, but there are better least square minimizers out there. I would recommend kmpfit, available at
http://www.astro.rug.nl/software/kapteyn-beta/kmpfittutorial.html
It is more robust that polyfit, and there is an example on their page which shows how to do a simple linear fit that should provide the basics of doing a 2nd order polynomial fit.
def model(p, v, x, w):
a,b,c,d,e,f,g,h,i,j,k = p #coefficients to the polynomials
return a*v**2 + b*x**2 + c*w**2 + d*v*x + e*v*w + f*x*w + g*v + h*x + i*y + k
def residuals(p, data): # Function needed by fit routine
v, x, w, z = data # The values for v, x, w and the measured hypersurface z
a,b,c,d,e,f,g,h,i,j,k = p #coefficients to the polynomials
return (z-model(p,v,x,w)) # Returns an array of residuals.
#This should (z-model(p,v,x,w))/err if
# there are error bars on the measured z values
#initial guess at parameters. Avoid using 0.0 as initial guess
par0 = [1.0, 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
#create a fitting object. data should be in the form
#that the functions above are looking for, i.e. a Nx4
#list of lists/tuples like (v,x,w,z)
fitobj = kmpfit.Fitter(residuals=residuals, data=data)
# call the fitter
fitobj.fit(params0=par0)
The success of these things is closely dependent on the starting values for the fit, so chose carefully if possible. With so many free parameters it could be a challenge to get a solution.