I have data like that:
object category country
495647 1 RUS
477462 2 GER
431567 3 USA
449136 1 RUS
367260 1 USA
495649 1 RUS
477461 2 GER
431562 3 USA
449133 2 RUS
367264 2 USA
...
where one object appears in various (category, country)
pairs and countries share a single list of categories.
I'd like to add another column to that, which would be a category weight per country - the number of objects appearing in a category for a category, normalized to sum up to 1 within a country (summation only over unique (category, country)
pairs).
I could do something like:
aggregate(df$object, list(df$category, df$country), length)
and then calculate the weight from there, but what's a more efficient and elegant way of doing that directly on the original data.
Desired example output:
object category country weight
495647 1 RUS .75
477462 2 GER .5
431567 3 USA .5
449136 1 RUS .75
367260 1 USA .25
495649 1 RUS .75
477461 3 GER .5
431562 3 USA .5
449133 2 RUS .25
367264 2 USA .25
...
The above would sum up to one within country for unique (category, country)
pairs.