This code works out the variations, then runs the permutations on each unique set of 3.
i.e. for "A", "B", "C", "D" the possibilities are [[A, B, C], [A, B, D], [A, C, D], [B, C, D]]. We then calculate the permutations on each threesome (or n-some) and append the possibilities to a list.
PermutationsOfN.processSubsets( List set, int k ) returns:
[[A, B, C], [A, B, D], [A, C, D], [B, C, D]]
Taking it a bit further PermutationsOfN.permutations( List list, int size ) returns:
[[A, B, C], [A, C, B], [C, A, B], [C, B, A], [B, C, A], [B, A, C], [A, B, D], [A, D, B], [D, A, B], [D, B, A], [B, D, A], [B, A, D], [A, C, D], [A, D, C], [D, A, C], [D, C, A], [C, D, A], [C, A, D], [B, C, D], [B, D, C], [D, B, C], [D, C, B], [C, D, B], [C, B, D]]
import java.util.Collection;
import java.util.List;
import com.google.common.collect.Collections2;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.Lists;
public class PermutationsOfN<T> {
public static void main( String[] args ) {
List<String> f = Lists.newArrayList( "A", "B", "C", "D" );
PermutationsOfN<String> g = new PermutationsOfN<String>();
System.out.println( String.format( "n=1 subsets %s", g.processSubsets( f, 1 ) ) );
System.out.println( String.format( "n=1 permutations %s", g.permutations( f, 1 ) ) );
System.out.println( String.format( "n=2 subsets %s", g.processSubsets( f, 2 ) ) );
System.out.println( String.format( "n=2 permutations %s", g.permutations( f, 2 ) ) );
System.out.println( String.format( "n=3 subsets %s", g.processSubsets( f, 3 ) ) );
System.out.println( String.format( "n=3 permutations %s", g.permutations( f, 3 ) ) );
System.out.println( String.format( "n=4 subsets %s", g.processSubsets( f, 4 ) ) );
System.out.println( String.format( "n=4 permutations %s", g.permutations( f, 4 ) ) );
System.out.println( String.format( "n=5 subsets %s", g.processSubsets( f, 5 ) ) );
System.out.println( String.format( "n=5 permutations %s", g.permutations( f, 5 ) ) );
}
public List<List<T>> processSubsets( List<T> set, int k ) {
if ( k > set.size() ) {
k = set.size();
}
List<List<T>> result = Lists.newArrayList();
List<T> subset = Lists.newArrayListWithCapacity( k );
for ( int i = 0; i < k; i++ ) {
subset.add( null );
}
return processLargerSubsets( result, set, subset, 0, 0 );
}
private List<List<T>> processLargerSubsets( List<List<T>> result, List<T> set, List<T> subset, int subsetSize, int nextIndex ) {
if ( subsetSize == subset.size() ) {
result.add( ImmutableList.copyOf( subset ) );
} else {
for ( int j = nextIndex; j < set.size(); j++ ) {
subset.set( subsetSize, set.get( j ) );
processLargerSubsets( result, set, subset, subsetSize + 1, j + 1 );
}
}
return result;
}
public Collection<List<T>> permutations( List<T> list, int size ) {
Collection<List<T>> all = Lists.newArrayList();
if ( list.size() < size ) {
size = list.size();
}
if ( list.size() == size ) {
all.addAll( Collections2.permutations( list ) );
} else {
for ( List<T> p : processSubsets( list, size ) ) {
all.addAll( Collections2.permutations( p ) );
}
}
return all;
}
}
A special mention goes to meriton whose answer here helped me work it out.