When in doubt about efficiency use the timeit module, it's always easy to use:
import timeit
def f1(aRange):
x = [2*i for i in aRange]
y = [3*i for i in aRange]
return x,y
def f2(aRange):
x, y = zip(*[(2*i, 3*i) for i in aRange])
return x,y
def f3(aRange):
x, y = zip(*((2*i, 3*i) for i in aRange))
return x,y
def f4(aRange):
x = []
y = []
for i in aRange:
x.append(i*2)
y.append(i*3)
return x,y
print "f1: %f" %timeit.Timer("f1(range(100))", "from __main__ import f1").timeit(100000)
print "f2: %f" %timeit.Timer("f2(range(100))", "from __main__ import f2").timeit(100000)
print "f3: %f" %timeit.Timer("f3(range(100))", "from __main__ import f3").timeit(100000)
print "f4: %f" %timeit.Timer("f4(range(100))", "from __main__ import f4").timeit(100000)
The results seem to be consistent in pointing to the first option as the quickest.
f1: 2.127573
f2: 3.551838
f3: 3.859768
f4: 4.282406