The other answers have it mostly right, but miss one critical thing.
If you define a class like this:
class Foo(object):
a = 5
and an instance:
myinstance = Foo()
Then Foo.a
and myinstance.a
are the very same variable. Changing one will change the other, and if you create multiple instances of Foo
, the .a
property on each will be the same variable. This is because of the way Python resolves attribute access: First it looks in the object's dict, and if it doesn't find it there, it looks in the class's dict, and so forth.
That also helps explain why assignments don't work the way you'd expect given the shared nature of the variable:
>>> bar = Foo()
>>> baz = Foo()
>>> Foo.a = 6
>>> bar.a = 7
>>> bar.a
7
>>> baz.a
6
What happened here is that when we assigned to Foo.a
, it modified the variable that all instance of Foo
normally resolve when you ask for instance.a
. But when we assigned to bar.a
, Python created a new variable on that instance called a
, which now masks the class variable - from now on, that particular instance will always see its own local value.
If you wanted each instance of your class to have a separate variable initialized to 5, the normal way to do it would be like this:
class Foo(object);
def __init__(self):
self.a = 5
That is, you define a class with a constructor that sets the a
variable on the new instance to 5.
Finally, what App Engine is doing is an entirely different kind of black magic called descriptors. In short, Python allows objects to define special __get__
and __set__
methods. When an instance of a class that defines these special methods is attached to a class, and you create an instance of that class, attempts to access the attribute will, instead of setting or returning the instance or class variable, they call the special __get__
and __set__
methods. A much more comprehensive introduction to descriptors can be found here, but here's a simple demo:
class MultiplyDescriptor(object):
def __init__(self, multiplicand, initial=0):
self.multiplicand = multiplicand
self.value = initial
def __get__(self, obj, objtype):
if obj is None:
return self
return self.multiplicand * self.value
def __set__(self, obj, value):
self.value = value
Now you can do something like this:
class Foo(object):
a = MultiplyDescriptor(2)
bar = Foo()
bar.a = 10
print bar.a # Prints 20!
Descriptors are the secret sauce behind a surprising amount of the Python language. For instance, property
is implemented using descriptors, as are methods, static and class methods, and a bunch of other stuff.