You can do this with the CUDA support of clang 3.8.
First, compile your CUDA code to emit llvm (example on Windows with CUDA 7.5 installed):
clang++ -c main.cu --cuda-gpu-arch=sm_35 -o main.ll -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\include"
Then, use the generated ll to build the callgraph with opt
:
opt.exe main.ll -analyze -dot-callgraph
Note that opt
is not part of the default binary distribution, you may need to build it yourself (I had a 3.7.1 build and it has been able to manage the ll from 3.8).
Example main.cu file:
#include <cuda_runtime.h>
__device__ int f() { return 1; }
__device__ float g(float* a) { return a[f()] ; }
__device__ float h() { return 42.0f ; }
__global__ void kernel (int a, float* b)
{
int c = a + f();
g(b);
b[c] = h();
}
Generated dot file:
digraph "Call graph" {
label="Call graph";
Node0x1e3d438 [shape=record,label="{external node}"];
Node0x1e3d438 -> Node0x1e3cfb0;
Node0x1e3d438 -> Node0x1e3ce48;
Node0x1e3d438 -> Node0x1e3d0a0;
Node0x1e3d438 -> Node0x1e3d258;
Node0x1e3d438 -> Node0x1e3cfd8;
Node0x1e3d438 -> Node0x1e3ce98;
Node0x1e3d438 -> Node0x1e3d000;
Node0x1e3d438 -> Node0x1e3cee8;
Node0x1e3d438 -> Node0x1e3d078;
Node0x1e3d000 [shape=record,label="{__cuda_module_ctor}"];
Node0x1e3d000 -> Node0x1e3ce98;
Node0x1e3d000 -> Node0x1e3d168;
Node0x1e3d078 [shape=record,label="{__cuda_module_dtor}"];
Node0x1e3d078 -> Node0x1e3cee8;
Node0x1e3cfb0 [shape=record,label="{^A?f@@YAHXZ}"];
Node0x1e3d0a0 [shape=record,label="{^A?h@@YAMXZ}"];
Node0x1e3ce48 [shape=record,label="{^A?g@@YAMPEAM@Z}"];
Node0x1e3ce48 -> Node0x1e3cfb0;
Node0x1e3d258 [shape=record,label="{^A?kernel@@YAXHPEAM@Z}"];
Node0x1e3d258 -> Node0x1e3cfb0;
Node0x1e3d258 -> Node0x1e3ce48;
Node0x1e3d258 -> Node0x1e3d0a0;
Node0x1e3d168 [shape=record,label="{__cuda_register_kernels}"];
Node0x1e3cee8 [shape=record,label="{__cudaUnregisterFatBinary}"];
Node0x1e3cee8 -> Node0x1e3d528;
Node0x1e3cfd8 [shape=record,label="{__cudaRegisterFunction}"];
Node0x1e3cfd8 -> Node0x1e3d528;
Node0x1e3ce98 [shape=record,label="{__cudaRegisterFatBinary}"];
Node0x1e3ce98 -> Node0x1e3d528;
}