I am using this pattern too, for those who wonder, here's an abstract example:
do // while(0) for break
{
state1 = 0;
if (cond1())
{
if (cond2())
break;
state1 = opA();
}
if (cond3() || state1 && state1->cond4())
break;
...
Triumph(state1, ...);
// often here: return
}
Failure(state1, ...);
I consider this valid in the following circumstances:
- you have a long-ish sequence (say, >~half a dozen of conditions)
- the conditions are complex, and you use / build up significant state, so you can't
isolate the elements into functions
- you are in an exception-unfriendly environment, or your
break
-ing code path is
not actually an exception
What you can do about it:
Silence the warning. It is just a warning, after all; and I don't see a "typical mistake" (like typing 0 instead of your condition) that would be caught by this warning.
[edit] Now, that was silly. the typical mistake that you catch with the warning is e.g. while (a1!=a1)
instead of while (a1!=a2)
.[/edit]
Break into functions, move state to a class
this would transform above code to:
struct Garbler
{
State1 state1;
bool Step1()
{
state1 = 0;
if (cond1())
{
if (cond2())
return false;
state1 = opA();
}
return true;
}
bool Step2()
{
return cond3() || state1 && state1->cond4();
}
..
void Run()
{
if (Step1() && Step2() && ... && Step23())
Triumph(state1, ...);
else
Failure(state1, ...);
}
}
This is arguably less readable, worse is that you pull apart the sequence, which might lead to a very questionable class (where members may be called only in a certain order).
Scopeguards
This may allow to transform the breaks into early returns, which are more acceptable:
state1 = 0;
ScopeGuard gFailure = MakeGuard(&Failure, ByRef(state1), ...);
if (cond1())
{
if (cond2())
return;
state1 = opA();
}
if (cond3() || state1 && state1->cond4())
return;
// everything went ok, we can dismiss the scopeguard
gFailure.Dismiss();
Triumph(state1, ...);
They can be more elegantly written in C++0x, preserve the flow, but the solution isn't that flexible either, e.g. when Failure()
cannot be isolated easily into a single function.